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I. Introduction

The development of the theor y of causal operators defined on a

resolution space was initiated a decad. ago in response to the failur e

of classical. Hilber’t space methods to yield a solution to the quadratic

optimization problems of mathematical system theory . Although this theory

has now achieved a considerable degree of maturity yielding viable

solutions to problems arising j ,n network synthesis C].], feedback system

stability (9], sensitivity theory (1) , and stochastic processes (7 ,8),

the solution to the original quadratic optimization problems has remained

elusive. Porter and DeSantis (12 ,23) have solved a deterministic servo-

mechan.tsa problem , Stienberger , Silverman , and Schuinitzky (22], have

solved a deterministic regulator’ problem and Saeks (7], has solved a

stoch~istic identification problem. The original goal of a general theory

for quadratic optimization, however , has yet to be achieved.

The purpose of the present paper is to present a derivation sDf the

Wiener-Hopf filter using resolution space techniques . Although still re-

stricted , we believe that the tools employed are indicative of the tech-

niques which will. eventually lead to a general theory of quadratic opti-

mization. Indeed , even for this restricted filter the deriviation re-

quires several recently developed results from the theory of causal

operator’s. These include :

i) the additive decomposition theorem far Hu bert-Schmidt oper’-

atars (10),

ii) the miniphase factorization theorm (7 , 19),

iii ) the theory of resolution space valued stochastic processes

(7 , 8, Li],

_____________________________ 
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3
iv) the quasi-nilpotence theorem for strictly causal operator’s

(9, 10].

‘1 

~~~~~~

Figure 1. Wierier— Hopf Filter

A basic filtering problem is illustrated in Figure 1, where the signal

“X” and noise “n” are mixed together. The goal. is to pass the mixed signal
P

through a filter T (to be designed) to get an output y such that y is the

“best copy” of X that can be achieved . When X and n are assumed to be

stationary , zero-mean and independent stochastic processes and the “best
I

copy” of X is defined in the sense that the error e (* X - y) has a mini-

mum variance , the solution is nothing but the classical Wienex’-Hopf filter.

(2] In this paper , we would like to formulate this problem in Hu bert

resolution spaces , i.e. we assume X and n to be Hu bert space valued random

variables (zero-mean and independent ) and attempt to find a filter T

(causal. operator ) such that the output y is the best copy of X in the

sense that the “var iance operator ” of the error is minimal.

Before we continue , let us explain the terminology we have j ust used .

p Hilbert Resolution Space

By a Hu bert Resolution Space , we mean a 2-tuple, (H,E), where H is

a Hil.bert space over’ the r eal field R and £ is a “so-called” resolution

~
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4 -
of identity ( ox’ spectra l measure ) in H. (1) A resolution of identity C

is a family of bounded linear operators , E ( A ) , on H defined for each

Bore]. subset A of the real number set R , satisfying the following con-

ditions :

i) E (A )  is an orthonormal. projection for each A £ 8(R ) a

the sit of all Bor.1 subsets of real. number set R ; i.e.

t E (a)] 2 a ~(~~) a

ii) E(~~~) E (62 ) a C (A
1 Q 82), V L~, 62 £ 8(R)

iii ) £~ 
d1f E((-.., t ) )  is continuous in th. strong operator topology,

goes to 0 as T goes to -~~~~, and goes to 1H ( identity mapping on H )

as T goes to

Defined as an operator from (H. C) to (H , C) ,  T is said to be causal

if

EtX1~ a CtX . ~~~~ Et~~ E~TX

A special class of causal operators termed as left-miniphase can be

defined by the following condition

EtX1 £tX~~~~~~ EtTX EtTX

The significance of be ing L.ft-miniphas . is that the inverse operator

t is also causal when the invertibility of the operator is guarant.ed . For

a more detailed survey of th . properties of a Hu bert resolution space ,

the reader is referre d to (1, t’~, 20).

Hu bert Resolution Space Valued Random Variables

When talking about random variables in a Hu bert space , the structure

of the resolution of identity is redundant . But for the purpose of this

paper , “resolution ” is included in th. title to avoid ambiguity. Let

X and n be r andom var iab les (le ] taking values in a Hilbert space H with

appropriate probability measure . X is said to have finite first moment

~ 

~~~~~~~~~~~ ~~~
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if for each h c  H

£ I ( X ,h ) I  (A )

and E(X ,h) is continuous in h.
I

Here “C” denotes the expected value of a scalar valued random

variable with respect to the probability space underlying X. A random

vari able satisfy ing condition (A )  has a “mean ” Mx which is defined by

the equation :

E (X ,h) a (h, Mx )
~

The existance and the uniqueness of M
~ is guar anteed by condition

(A ) following from the Riesz re pre sentation theorem (2 1).

In the sequel. we deal with zero-mean random var iables unless other-

p wise specified. Such a random variable is said to have finite second

moment if

C(X ,h) 2 c — for all h £ H (B )

I and it is continuous in h.

As such , X has a “variance operator” 
~~ 

which is defined as follows

E(X ,h) OC ,g) r (h , Q~g ) V h g c H

• The existence and uniqueness of is assured by the representation

theorem for bilinear functiona ls on Hu bert space (8] together with

condition (B) .  More generally , given two zero-mean processes X and a

1 with finite second moment , a covax’iance operator Q~~ can be defined as

follows

E(X ,h)(n ,g)  = (h~ Q,~ g ) V h £ H

I clearl y 
~~ 

Q~~ .

The covariance operators satisfy the following :

i) Q (~~~)(~~~) L Q.~ P1*, for’ bounded linear operators L and H

ii) Q = Q I Q ~~~~~ Q~~~ + Q ~

iii) a Q~~ , in particular’, 
~ 

a Q~

p 

- 
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iv) is positive , i.~~• (h , Qxh ) >

V h  £ H

v)  £( 1X 11 2 < — if and only if is nuclear in which case

EIIX ~I2 a VrCQ
~
]

Finally , we say X and a are independent if a 0.

11. The Optimal Filter

With the terminology defined above , we can now form ally state the

problem as follows:

Let X and a be Hii.bert Resolution space (H ,E) valued

random variables . X 6nd a are zero-mean and independent . X and a

have and as their varianc e operator , respectively . We want

to find a causal filter operator T on (H ,E) such that the output

y of the filter (with X + a as the input ) is the best copy of X

in the sense that the erro r a (defined as X - y) has a minimal

variance operator 
~~~~~ 

Not e here that is a positive operator hence

it mak es sense to talk about the minimal Q~ in the partial. ordering

of positive operators .

Even though the problem is stated above in its most general form, it

is not solved for the gener al case. However , we do find an optimal filter

fox’ a special case , character’i:ed by the following assumptions :

is Hii.bert -Schmidt .

ii) Q,~ + is invertible.

iii) The optimal filter T to be found is restricted to the class of

Hilbert-Schmidt operators. Note : the assumptions are compatible

with the interpretation of X as a random signal and a as a noise

~ x’OC CS5~

With these assumptions in mind , let us der ive the variance operator’

Q..

- -- -f 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.~~~ ~~~~~ - — .- .
~~~~~~~~~~~~~~~ ±_~~~

__



Since e dçf x - y,

e z X ~~~y X ~~~T ( x i n) :(I _ T ) X + T n

Hence = 
~(I-T) +

I
= (I-T ) ~~_T)* + T

zT + Q )~~* T Q ~~~ Q~~* + Q

p In deriving 
~a ’ independence of X and a has been employed . We have

also noted that 
~~~ + n ~x 

+ ~5 positive and self-adjoint . Following

the operator actorization theorem (7 , 19, 20], there exists a Hu bert

resolution space* (H , E) and a linear operator F from (H , E) to (H , C)

such that (a) F is left-miniphase and (b) + FF*. Furthermore ,

F is invertible since + 
~n is invertible . Therefore F 1 is causal .

P Then we can rewrite Q as follows :

a T  F F* T TQx 
- 

~x 
T* +

• CTF - Qx(Fe) 
12 (F* T’~ - F

~~
Qx ) + - Qx~*

] 
F •1

= - 

~~~~~~~ 
(TT - + - (F FeY’ Q

In the above equation , 
~~ 

and QX (F F*Y~ ~~ 
are both positive and in-

dependent of T. Therefore , finding the minimum of 
~e 

is the same as

-1finding the minimum of (TF - (Fe) ) (TF - Qx (F*) I denoted as Q(T)

• from now on.

Q(T) is in quadratic farm. The minimum Q(T)occurs when TF Qx
( F*Y

i .

To fulfill this equation , we need a filter T which is equal to Qx(F* ) ~

a QxU’ ~*)~~ ~x~~x 
+ Unfort unate ly , this operator is not necessar i.-

ly causal. In order to find an optimal causal filter , we decompos e

into two terms ;
• Qx(Fe)

’ = A + C , where A is th. strictly anti-causal. part of

Q~ ( Fe) 1 and C is th. causal part . The exista nce and the uniqueness of

*Thj s space has been shown to be the reproducing kernel resolution space f~’r
• Q.,+ Q (7 ,19), which does not, in general, coincide wiVh .(H.C). tndeed, the factor-

i~atiSn may not exist if one requires that (H ,E) and (H ,E ) coinc ide . •
1

~

-

~

-

~

- .- .~~~~~~~ --



the decomposition are guaran teed by th~ f act t’~at Qx (F* )~~ is Hu bert-

Schmidt . Readers are referred to [1, 7 , 9 , 10 , 19 , 20) for the termin-

ology and details .

Substituting Qx ( F*Yl back into the equation for Q(T), we obtain

Q( T) : ( T F _ C _ A ) ( T F _ C _ A ) *

(T F - C) (T F - C)e - (T F - C) A~ - A (T F - C) + A A~

In this equation, A(T F - C)* is strictly anti-causal and (T F - C) A*
is strictly causal.

By the assumption that T and ax’e Hu bert-Schm idt, each term in the

equation for Q( T )  is found to be nuclear’. Therefore , the trace of Q(T)  is

taken.

Tr {Q(T)] = Tr ((T F - C) (T F - C)*] + Tr [A A*]

Two terms are dropped in the above equation due to the fact that the trace of

any strictly causal (or anti-causal) nuclear operator is zero [9, 10). It

is also known that the trace of any positive nuclear operator is positive .

Hence , the minimum of Tr {Q(T) 1 occurs when T F = C , i.e. when we have a

filter T C F~
1. This filter C F is causal following our derivation.

Now the only problem left is to verify that Q(C F~~) is minimal. The

verification is straigtforward following from the fact that a positive ,

sel.f-adjoiat operator is zero if and only if its trace is zero [20].

To sununarize what we have done in this section , we formulate the

following theorem.

Thm. i) Let X and a be Hu bert Resoluti on Space (H, E) valued

random variables.

ii) X and a are zero-mean and independent.

and denote the variance operators of X and a , respectively.

is assumed to be HUbert-Schmidt and + is

invertible.

iv) F is a left-miniphase factorization of +



-~
--
~p . 

~~~ .

I
The , the optimal causal filter operator among the class of the

Hilbex’t-Schmidt operators is C F 1, where C is the causal. part of the
—1

• operator

III. Conclusions

The Wiener- Hopf filtir derived above is sketched diagramatically in

Figure 2. The first transformation, denoted by F 1, is usually termed

the whitening filter since its output , the innovation s process , is white

• 
noise ; i.e. it has a memox’yless covax’iance operator’ (7]. It is signifi-

cant that for the filter to be well defined it was necessary to take

(H ,E) to be the reproducing kernel resolution space for + Q~ rather

p than the given resolution space (H ,E) .  As such , one may conclude that

the innovations process naturally “lives” in this reproducing kernel

space thus yielding a further justification for the study of this ab-

• stract resolution space even though the given system is defined on a

concrete resolution space .

p

(H ,E)• 
7

/ N
N

• (H,E) )  (H ,E)
T

Figure 2. Diagramatic Representation of the
p Wiener-Hopf Filter

p

_ _ _ _ _ _  
_ _  .rn .~~~~~~~~~~~~~~~ 
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Although the above derivation is restricted to a very specialized

filtering problem we believe that the techniques employed are indicative

of those which will eventually lead to a general theory of quadratic

optimization in resolution space . Indeed , the authors have already made

significant progress towards the generalization of the above concepts to

stochastic control and estimation problems for systems described by both

input-output and state models (20 ,24]. Of course , these results , as with

the above Wiener-Hopf filter , apply to distributed and time-variable

systems as well as the classical LLF systems.

A careful inspection of the .derivation of the above filter will.

reveal that the restriction that + be invert ible can be dropped by

exploiting the fact that the miniphase factor of + is one-to-one

for’ arbitrary covariance operators (7 , 19]. As such , if one replaces

by F L (left inverse) the above derivation may be carried out without the

invertibility assumption. Finally , we note that the HUbert -Schmidt

assumptions are required only to make the trace well defined . Th. de-

rivation , however , remains ( formally ) valid if one allows arbitrary oper-

ators and hence infinite values for the trace . Alternatively , one may

replace the trace by the memor’yless part transformator (1, 10] obtaining

the Wiener-Hopf filter by minimizing the memoryless part of the error

covariance (in the partial ordering of positiv, operators). This results

is an optimal ( though non-unique ) filter whenever the operator CQX (r *) _R ]

has a well defined additive decomposition into causal and strictly anti-

causal parts . 

~~ . —-- ... L. ~~~~~
—

~~~~
- 
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WIENER-HOPF TECHNIQUES IN RESOLUTION SPACE

L. lung and R. Saeks
Dept. of Electri cal Engineering

Texas Tech Uni versity
Lubbock, Texas 79409

INTRODUCTION

Wiener-Hopf filteri ng is a widely used technique in certain kinds of

optimi zation problems . The purpose of this paper is to formulate Wiener-

Hopf filtering in abstract spaces ( reflexi ve Banach resolution spaces) and

to examine problems involved for the formulation and the solving of the

Wiener-Hopf filter.

Referring to what has been done in the frequency domain of the classica l

Wiener—Hopf filtering1, we ’ ve found five major problems for the formulation

of Wiener-Hopf filtering in abstract spaces. They are

i. Random vari ables in abstrace spaces

ii . Causality

iii. Operator factorization

iv. Operator decomposition

v. Optimi zation.

These problems are briefly introduced as follows:

i. Random process can be thought of as a random variable which takes

values in a function space. In order to do so, we need an adequate prob-

ability measure over the space invo l ved. Fortunately, this kind of prob-

ability measure has been defined over metri c space 2 . For our purposes ,

we assume that the space involve d is reflexive Banach space, not only

because this kind of space possesses nice properties but also because

stochastic concepts such as “mean ” and “variance operation” can be defined

therein. Random variables taking values in reflexi ve Banach space is 

-- ~~~~~~~ .. -.~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -—~~~~~~~~~~~~~
-, .,
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discussed in section II with probability measure assumed impl icitly.

• ii. Concepts of causality have been introduced into Hu bert space-

the so-called Hu bert resolution space3. I n section III , we extend the
works done for Hu bert space to Banach space . Concepts of causality,

• such as causal , anti-causal , miniphase and maxiphase, are defined.

Emphases are given to reflexi ve Banach resol ution space .

iii . Operators to be factorized in the form of KK*, where K* de-

P notes the adjoint of K, have to be “positi ve” and “seif-adjoint”. These

coninonly-used properties among operators on Hu bert space can be extended

to operators which map reflexive Banach space to its dual space. Factor-

• ization theorem is gi ve n in section IV. Factor operator K is required

to be left-miniphase.

iv. The decomposition of operators over Hu bert space is treaded

- P in Ref. 3. For operators over Banach spaces , this problem is still under

research. For our convenience, operators are restricted to those which

guarantee the decomposi tion.

* v. As in the classical Wiener-Hopf fil tering, we woul d like to

minimi ze the variance of the error. However, when Wiener-Hopf filtering

is formulated in reflexive Banach space, the variance of the error is

a positive and self-adjoint operator which can only be minimi zed in the

partial ordering of the positive operators. This subject is treaded in

section V.
p

BANA CH SPACE VALUE D RANDOM VARIABLES
$ The theory of Banach space valued random variables has been studied

in Ref. 2. For our purpose, we discuss reflexive Banach space valued

random variables with probability measure over the space assumed implicitly.
c 

~~~~~ 

-
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The development follows that of Parthasarathy (2) and Balakrishnan (4);

the reader is referred to these works for the details.

Let p, n denote finitely addi tive random variables taking values in

a reflexive Banach space B. For such random variables , we assume

E{~(p, x* ) I}  < , for all x~ £ B*
(2.1)

E((p, x*)} is continuous in x~
Here E (} denotes the expected value of a scalar valued random variable

with respect to the probability space underlying ~~. For random variables which

satisfy condition (2.1), there Is a unique vector mp in B satisfying

E~(p, x*)} (ne,, x*), for x~ £ B* .

n~ is termed as the mean of random variabl e p. As in most stochastic

processes, mean is not our prime concern. Therefore, In the sequel we

only deal with zero-mean random variables. For such random variables ,

we further assume

E{I (p~,x*) (
~

, y*)~}

for all x*,y* cB*
(2.2)

E { ( p ,  x*) (,~r , y*)}
is con tinuous In x~ and 6*

It can be shown that condition (2.2) implies condi tion (2.1). Now

let’s take a look at E{(p, x*) (it , y*)}. If we fix y*, then E{(p, x*)

(,
~
, y*)} is a bounded linear functional on B* (so an element of B~~”B ) .

This means that there exists a unique ~~ 
in B such that E{(p, x~ ~~ 

y*)}

x*) for x~ £ B*. Define a mapping B* Bby Q ,Ty* ~~~~~
Hence E{(p, x*) (~

, y*)) a (Q y*, x*).

~~~~~ ~~~~~ - - -. - -
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it can be easily proven that Is linear. ~breover, Q~~ 
is bounded.

• Q~~ 
is termed as the covarlance operator of random variables ~

, and ~~ .

Covarlance operators satisfy following condi tions:

~ ~(L~) (Me) 
I Q~~M* , where I and M are linear bounded operators

• on B.

Ii. Define ~~ Q~~~, then Q~+,~* Q~+ Q~ 
+ Q~~+ 

~~~~~~~ 
Q~ Is called the

variance operator of p.

Iii. Q~~ 
* 

~~p in particul ar Q a

iv . Q~ 
is positi ve in the sense that (Q

~ 
y~, y*) a 

~{(p~ y*)
2}i. 0,

for all y* t B.

These condi tions result from straight forward manipulation of the

defining equation for the covariarice operator. Using Q~~
, we say that

p and it are independent If Q •O.
p 

p

BANA CH RESOLUTION SPACE

By a Banach resolution space , we mean a 2-tuple, (B, BF), where B

Is a Banac h space an d BF Is the so-called resolution of identity in B ,

which is defined in the following :
I

(A ) Resolution of Identi ty

Definition 3.1. Let B be a Banach space. By a resolution of i dentity,

• BF. in B, we mean a family of linear bounded operators, BF (a) , on B

defined for each Borel subset, A, of the real number set R, satisfying

the followings :

1 8F( R) IB~idefltl
~

f operator on B
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~L B F(A 1) 8F(~ 2) a 
8F(A 1~A2), for al l A 1 , A 2 c 8(R) - the

set of all Borel subsets of R.
n n n

iii. ,~F (U~ i) = z ,,F(A 1), where {~~) is a finite set of disjoint
0 10  1

Borel subsets of R.

iv . I I BF(A) x IL~. I lx H , for all A E B (R) and x c B (Equi valent

statement: Norm of BF (A) is either 0 or 1)

The subscript on the left in the notation, 8F, is to notify that

the resolution of identi ty is defined over space B and will be dropped

If no ambiguity would result.

Working with a Banach resolution space, (B ,8F), it is natural and

Important to ask whether we can define a resolution of identi ty in B*,

the dual space of B. The following theorem gives us the answer.

Theorem 3.1. Let (B, BF) be a Banach resolution space, then

{BF *(A) ~A c B (A)} is a resolution of identi ty in B*
_termed as the

induced resolution space, (B*, BF ) .
With the resolution of identi ty defined as above, we’d like to point

out that although Hilbert space is a special case of Banach space, Def-

inition 3.1 does not lead to a Hu bert resolution space3. In Hu bert

resolution space, the resolution of identi ty, {E(A) I~ ~ B 
(R)}, sat-

isfies an addi tional condi tion , i.e. E* (A) = E ( A ) .

Example. Let p, q £ R, such that 1/p + 1/q = 1. Then L~ is a reflexive

Banach space wi th dual space Lq~ For each f e define (f,q)

~f(t) g(t) dt. Let F ( A )  f( t ) = X (A) f(t) 0 
,

f(t),ts~

It is easy to show that {F (A )  I A~8(R) is a resolution of i denti ty

in L~ and F* (A) ~(A) for all A B (R). 

- — , - - —---~~~-~~~~~~~~~~~ ~~--~-~~~~-~~
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(B) Concepts of causalit y

Definition 3.2. Let (X.x F), (Y~~F) be Banach resolution spaces.

1: X-.Y , is a linear bounded operator

(I) T is causal If XF
t x1 = xF

t x2 
-~ ~F

t T x 1 a ~F
t i x2, where

BF
t = B~~~

0,t) , B~ X , y.

(ii) I is anti-causal , if x~t 
x1 ~~ x2 iFt i * yF~ I

where BFt B~
’ (t,~”), B X, V .

(iii) I is memoryless, if T is causal and anti-causal .

(iv) I is left—miniphase if xF
t x1 = xF

t x2 ~F
t T x1 ~F

t I

(v) Tis left maxlphase if
~~

Ft xi
a
~~

Ft x2 <....> yFt T x i y Ft T x 2

(vi ) I is right—miniphase , if I x~t 
{X} yFt ~~

(vii) I is right—maxiphase , if I xF
t {X} ~F

t {Y}

According. to above definitions , we’ve found the following resul ts:
$

(1) Minlphase, left—or— right-, impl ies causality .

(2) Flaxiphase, left-or-right— , Imp lies anti-causality.

(3) When X and V are reflexive, we have
$

(a) I is causal <~~~ T* is anti causal

(b) I is left-miniphase ~—> T~ is right-.maxiphase .

(4) When X and V are reflexive and I Is inve rtable, we have

(a) ~1iniphases are equi valent, so are maxiphases.

(b) I is miniphase —> T and T ’ causal

I is maxiphase —~T and T
1 anti-causal.

Readers are referred to Ref. 5 for the details .

OPE RATOR FACTORIZATION

Not every operator over arbitrary Banach spaces can be factorized

in the form desired . For our purpose the desired form of factorizatlon is K K*.

— — - —--..

~ 

___________________________—- . 1J±t. . _ _ _  - ~~~ 
i. .._ — — ~~~~~~~~~~~~~~~~~~
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An operator to be factorized in this form has to be positive and seif-adjoint.

These two con~nonly-used properties for operators over Hilbert space can be

extended to operators that map from reflexive Banach space to its dual

space. They are defined as fol lows:

Definition 4.1.

(i) Let B be a reflexive Banach space.

(ii) Q B~’8* , is linear and bounded. Q is said to be posi ti ve if

(x, Qx) > 0, for each x c B. Q is said to be seif-adjoint if Q~ 
= Q~

Note that Q* : B**=B -~ B* so it makes sense to compare Q with Q*.

For posi tive and seif-adjoint operators, we have the following theorem:

Theorem 4.1.

(1) Let B be a reflexive Banach space .

(ii) Q : B~B*, is linea r, bounded , positi ve and self-adjoint.

Then there exist a Hu bert space H and a linear bounded operator K :

H-.8, such that Q = K K*6.

When dealing with Banach resoluti on spaces, the usefulness of operator

factorization is limi ted unl ess the factor operator possesses certain causal

properties. Referring to factorization of the spectral density in classical

Wiener-Hopf fil tering, we ha ve found what we need is a factorization theorem

which gi ves a causal operator and guarantees a causal i nverse once the

existance of a Inverse Is granted, i.e. a theorem that gi ves a miniphase

factorization. Based on Theorem 4.1, we construct the resolution of

identities in spaces involved and we come up with the following theorem.

Theorem 4.2.

(I) Let (B,F) be a reflexive Banach resolution space. (B*, F*)

denotes the induced resolution space.
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(ii) Q a (B ,F) -~ (B*, F*), is linear , bounded , positi ve and sel f—

adjoint. Then there exist a HUbert resolution space (H,E) and a linear

bounded operator K (H, E) -~ (B*, F*) suc h that

1. Q = K K ~
2. K Is a left-miniphase

3. The factorization is unique up to a memoryless unita ry

transformation.

For the proof of this theory, please refer to Ref. 5.

WIENER-HOPF FILTERI NG FORMULATED IN REFLEXIVE BANACH SPACE

With the preparation of sections II, III and IV , now we are ready

for the formulation of Wiener—Hopf fil tering. The formulation is clone

as follow s :

Let X , n be random variables taking values in a reflexive Banach

resolution space (B , F). X denotes the signal and n the noise. Both

X and n satisfy condi tion (2.2) in section II and they are assumed to

be zero-mean and independent. As such , X and n have and as their

variance operators respectively. The prob lem we are facing is to find

a fi l ter, I : B-~8, l inear an d causal , to operate on X + n such that the

erro r, defined as x—y , where y is the output of I, has a var iance opera tor

that is minima l in the partial ordering of the positive operators. We

will describe this ordering right after we find the variance of the error.

Let e denote the error and Q denote its variance operator. Since
clef e

e ~ X-y a x — T(X+n) = (I-T)X +Tn we have

a (I-T) 
~~ 

(I_T)* + I Q
~ 

T~, follow i ng fro m the resul ts i n sect i on

II. Rearranging tern~ in 
~e’ 

we get

- - .- ---- ..
~~~~~~~— 



- - -
~~

- -—--~~
--i.~~

2;

= UQx+Qn)T* - - +

is dependent on T. We wri te 0e (T) to noti fy the dependence.

0e (t0) is said to be minimal for some filter I0, if

~~~~ ~ 
Qe(To) Qe(T) Qe(To) (A < B if (B-A) is positive).

In the equation for 
~e’ ~~ 

+ Q~ represents the variance operator

of X+n, hence is positi ve and sei f-adjoint. Therefore, by Theorem 4.2,

there exists a resoluti on space (H ,E) and a linear bounded operator

K = (H,E) -
~~ (B ,F), such that (a) 

~ 
= K K* (b) K is a l eft-miniphase.

Wi thout further assumptions , the formulation would be stuck right here .

At this point , wha t we need is an invertable factor operator K. The

invertability of K can be gua ranteed by the invertability of +

There are several ways to secure the inve rtability of + 

~~ 
One way

is to assume tha t + 
~n 

in onto and is posi tive definite . With an

i nve rtable factor K , 
~e 

can be rewritten an

= I K K* 1* - 1* - K + = {TK~Qx(K*Y~} {K*T*
_T 1QX} +

- Q x (K*)~ 
(1 

~ 
= (TK Qx(K*Y

4} {T K Qx(K*Y~ }* + 
~~X 

- 

~~~~~ 

(KK*Y~ Qx
The last two terms in the above equation , 

~~ 
and QX (KK*Y~Q X , are

positive and independent of I. Hence, to fi nd the minima l of 
~e is the

same as to find the minima l of {TK_Q x(K*Y~} {TK Qx (K*y~}* - deno ted as

Q(T) in the sequel . Right now , we are facing the same kind of problem as

in classical Wiener—Hopf fil tering. Minima l Q(t) occurs when I = Qx(K*Y~K~~,

but it does not represent a causal system in general . In order to get a

possible optimal causal fi l ter, can we decompose Qx(K*Y~ into “causal part”

and “strictly anti-causal” (a term to be general ized in Banach resolution

space) and under what conditions can we do so? This subject has been

treated in Ref. 3 and Ref. 7 when the reflexive Banach space happens to

be a Hu bert space. However in reflexive Banach resolution spaces, the

subject Is still under research. While we follow the same pattern as that

- ~~~~~--.
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I

of classica l W lener-Hopf fi l tering in frequency domain , we woul d like

to ask whether this decompositi on woul d work and how it would. The

same question in classical Wiener-Hopf fi l tering is not di rectly answered

in frequency domain. In order to find the answer, let’s assume the

• decomposition . Let

Qx(K*)
4 

• C + A, where C is the causal part of Qx(K*y
l and A is

the “strictly anti -causal part” (a term to be generalized in Banach

• resolutIon space). Then

Q(1) - (1K-C-Al (IK_C_A )*

-~~~ (1K-C) (TK_C}* - A {TK _ C) *

P a {TK_ C }A * + AA*

To cla im TK~C-O is the condi tion for minima l A(T), we should demon-

strate that those cross tenns,(TK-C} A* and A {TK_C}*, have no effect on

- 

$ the ordering of Q(T). Again when the reflexive Banach resolution space

is Hu bert resolution space, we ’ve found two ways to achieve this. The

first one Is to take the trace of Q(T). Surely, work has to be done to

guarantee Q(T) being nuclear. The second one Is to take the memoryless

part of Q(T). This Is justi fied once the decomposition is given. However

we ’ve also found advantages and disadvantages to each way . For the method

of taking trace, it g ives a min imal var iance opera tor once the max i mum

of the trace is found, but we have to restrict certain opera tors, such

as an d I, to be Hu bert-Schmidt. On the other hand , the method of

taking memoryless part works for a broader class of operators-operators which

have decompos it ions , but it does not give a minima l variance operator.

The best we can have is a variance operator that has a minimal nienioryless

part. However, there is an Importan t aspect for taking the memoryless

part. Th is method allows us to generalize the i dea In reflexi ve Banach

space, while the other method does not. The reason Is quite simple , for 

Ii___ 
-~~~~~~~~~~~~~~~~~ --~~~—



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

24

It does not make sense to talk about the elgenvalue of an operator that

maps from Banach space to its dual , not to mention the trace of such an

operator, while It does not make sense to take the meinoryless part given

the decomposition . Readers are referred to Ref. 5 for the details of

Wiener-Hopf fi l tering formulated In Hf lbert resolution space . When all

the problems mentioned above are solved, we would come up with the optima l

f i l t e r T~ - C K ’, a causal system.

CONCLUS ION

Wiener—Hopf filtering has been formulated ‘tnd solved in Hilbert

resolu tion space 5. In this paper, we outl i ned the formulation in re-

flexive Banach resolution space and the possible way of solving it.

General ization would be accomplished once the theory of operator de-

composition in 3anach resolution space is completed.
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Reproducing Cam el Resolution Spac. and Its

Applications II’
+ 0L. lung and R. sacks

Abstract

This paper extends the concept of a reproducing kernel resolution space to a
Banach space setting. The resultant reproducing kernel resolution space , however ,
retains a Ililbert space thereby perm itting a nmmmber of problem: in mathematical

system theory to be transformed from Banach space to Hu bert space . Particular
emphasis Is given to the study of Banach space valued random variables and the
scattering operator for~ial1sa for an electric network.

I. Introduction

In a previous paper12 one of the authors exhibited the relationsnip between

the factorizatlon problems 19 which arise in mathematical system theory and the

reproducing kernel resolution spaces introduced by Kailath and Duttweiller t3. The

purpose of the present paper Is to show that much of this work can be extended to
a Sanach space setting without the loss of its If Ilbert space character . Indeed,

It is shown that the reproducing kernel reso lution space for a positive sel f-ad-

J o int operator mapping a reflexive Banach space to its dual is a Hu bert space.

Since this Is precisely the class of operators encountered when the factori:ation

problems 0f mathematical system theory are extended to a 3anach space setting, the

resultant theory allows one to transform systems problems from a 9anach space to

a f ilbert space setting. In particular, It Is shown that the study of certain

3anach space valued random variables can be carried out in the reproducing kernel

filbert resolution space defined by its covariance. Secondly, It Is shown that an

Oept. of EE, Univ. of Texas at El Paso, El Paso, Texas 7~968.
cOept. of E~~and Mathematlc~, Texas Tech Univ., Lubbock , Texas 7~4O9.
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electric network with volta ge and current vectors defined In Banach space may be
characterized by a scattering operator defined on an appropriate reproducing

kerne l filbert resolution space.

A 3anach resolution space Is defined and Its elementary properties developed.

We note that the axioms for a Banach resolution space are weaker than those re-

quired for e filbert resolution space and, as such, the theory developed does not

necessarily specialize to the classical Hu bert resolution space theory. The

axioms are, however, sufficient for the present purposes. In particular , such con-
cepts as causal, anticausal , miniphasa, and maxiphase operators are wel l defined .

En the third section a factorization theorem for operators mapping a reflex-

ive Banach space to its dual recently developed by Chobanian6’7, Vakhanla3, and

Masani 9 is applied to Banach resolution spaces to develop miniphase and naxlphase

factorization theorems. With the help of these theorems a ~un1queM factor space

— the generalization of the RKRS to Banach resolution space - Is formulated.

While sections II and EU dea f with fundamental theorems, sections IV and ‘1

are devoted to the appl ication of these theorems. The first application con-

sidered is the study of reflexive Banach space valued random variables. With the

probability measure over the Banach space assmaned implicitly stochasti c concept3

such as mean and covarlance operator are defined. Since the resultant variance

operator is a positive seif—adjo int mapping from a reflexive Banach space to its

dual the factorization theory developed in the previous section may be Invoked

to transform the given random variable Into its reproducing kernel filbert resolut-

ion space.

In section V similar factorfzatfon techniques are used to define the scattering
variables for an electric network characterized by voltage and current vectors

taking values In a reflexive Banach space and its dual, respectively. Here , the

normalizing operators take the form of naps from the given Banach space to an

appropriate reproducing kerne l filbert resolution space resulti ng In a scatte ring

operator which Is defined on a filbert space.

— ~~ 1~~~ — —
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It. Banach Resolution Soace

By a Banach resolution space, we mean a 2-tuple, (B,9F), where B is a Banach

space and is the so—called resolution of identity in B, which Is defined as

foil ows.

Resolution of Identity tn Banach Space

Def. 11.1. Let B be a Banach space. By a resolution of Identity, 3F,

in B, we mean a family of bounded linear operators, BF(
~
), on B defined for

each Borel subset, ~, of the real number set R, satisfying the followi ng

conditions:

~ • — ‘B — identity operator on B.

ii. 8F(a1) BF~~z) 3F(A1 ~ ~~ for all 
~l’ ~ 

c a( R )  — the

set of all Borel subsets of R.
n

III. 9F(U a~) — ~ 8F(~1),(~1} 1: finite set of disjoint Borel

subsets of R.

iv. < j x f l ,  for all ~ c ~(R) and * c B (equivalently

the norm ofBF(s) is either 0 or 1).

The subscript on the left In the notation, 3F, Is to signify that

the resolution of identity is defined in space B, and will  be dropped ff no am-

biguity would result.

Working with a Banach resolution space (B, 3F), It is natural and

Important to ask whether we can define a resoluton of Identity in 3*, the dual

space of B. The following theorem gives us the answer.

Tl~ . £1.1. Let ~~ be a Banach resolution space. Then

c a(R) } Is a resolution of identity in 3* This resolution of iden-

tity In 3’ Is called the Induced resolution of identity .

The proof of this theorem follows from straightforward nanipulation of the

definitions of ad.joint operator and resolution of identity .

The Concept of a resolution of identi ty C3fl be best understood by

- --- .— -
—  ~~~~~~~~~~~~~~~~~ -
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examples. Two typical examples are illustrated as follows.

Example 1. L~: the Banach space of eq~j ivalenee~~lasses of functions

that nap R to R and satisfy the following inequality ,

j Ic(t) I~~d t c — ,where l < p . .

Define
10 , for t~~~F(A)f( t) - X(~)f( t) “( , for f c L~.for t c

It Is easy to show that F(a) IA e(R) } is a resolution of identity in L~ once

the properties of x(~) are explored.

Example 2. Let p , q c R s u c h that l/p 4 l / q — l .  Then L~~isare ..
flexive Banach space whose dual space Is Lq~ For al l  f c L~. g ~ Lq~
define -

(f ,g) ~ f(t)g(t) dt.

Let {F(
~)I~ c s(R) } be the resolution of identity inL~ as defined in Example 1.

Then we have
(F(~)f , g) — r Cx(4)f(t)3g(t) dt

— f~ 
f(t )g( t) dt

C f(t)[x(~)g(t) ] dt

• (f , x(a)g)
So Cx(~)Ia c s(R)} is also the induced resolution of Identity In Lq~

Causality of Ocerators

Def 11.2. Let (X, xF), (Y, ~F) be Banach resolution spaces. I : X— 4~ , is

a linear bound operator.

1. 1 Is said to be causal , If

x2 ~F
t I x1 ~F 1’ x~, where

• 3F(-., t), B - X , Y.

— — - ____ 
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Ii. I Is said to be anti—causal if 32

XFt *1 xFt *2 yFt I yF~ 1*2, where B t 3 8  , B - X , Y.
lii . I is said to be m.moryless If I Is causal and anti-causal.

lv. I Is said to b left-miniphase if

I x — a ~—‘ x — 0,

v. I Is said to be left-maxiphase If

yFt T X 5 0(1
~~x

Ft X 5O .

vi. I is said to be right-miniphase If

TCxFttX]] 
S yF~EY)s

vii. I is said to be right-maxiphase if

ItxF
t(x]] pt[y)

Based on the above definitions , the following results may be readily verified?
- 

1. If I is ninl phase,left— or right— , then I is causal .

2. If I 1s.~~xiphase,left- or right-, then .1 Is anti-causal .

3. When the spaces involved are reflexive and I X . Y is bounded and linear, then

(a) I is causal 1ff 7’ Is anti—causal
(the induced resolutions of identity have been used
for the determination of the causality of 1’)

(b) I is left-miniphase 1ff 1* Is right-maxiphase

4. When the spaces involved are reflexive and T:X Y~is invertible.

(a) I is left—miniphasa(maxiphase) if it is right-miniphase (maxiphase).

(b) I is niniphase —‘ T & T~ are causal
I Is imx iph ase — T & I are anti-causal.

The reader I s referred to Ref. 2 for the details.

III. Operator Factorizatlon and RKRS

A number of applications arise In system theory wherein it is desired to

factor an operator, Q, ei ther in the form KX’ or I~T. For an operator to ~e
ii —

factori zed in either of these forms It has to be ‘positive” and “seif-adjoint”.

Al though undefined In genera l , these two c nsnonly used properties for operators
over Hu bert space can be extended to operators that map a reflexive Be ach space

to its dua l space. They are defined as follows :

- a - - - .
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If .  I: 3 .. 8’, Is lInear and bounded.

I Is said to be positive If

(x, I x) 0, for all x c 8.

I is said to be self—adjolnt If

I’-I.
Note that I’: 3**s3 • 8’, so that It makes sense to equate I and I’.

For positive and seif-adjoint operators, we have the following theorem. The

theorem Is stated without proof. Interested readers are referred to Masani ‘s work

(9).

Thm. 111.1. Let Q: B • B’, be a linear, bounded, positive and sel f-ad.joint oper-

ator, where B Is a reflexive Banach space and 3* Is Its dual . Then there exists a

Hu bert space H and a linear bounded operator K mapping H to B’ such that

Q a K c* 6,7~
8,9

Left- and Right- Factorization

Although Ihm. 111.1 yield a factorization through a Hilbert space, which Is valid

for any linear, bounded, positive, sel f adjoint operator mapping a refl exive Banach

space to it dual our applications in System Theory require that the factors , K, have

appropriate causality properties.. Based on Thm.ItI.l , we constrict appropriate reso-

lutions of identity in the spaces Involved which yield the followi ng theore ms.
Thm. III .2(left-factorization) .

1. (B,.F) is a reflexive Banach resolution space.

ii. Q: (B, F) • (B’, F’) , where F’ Is the Induced resolution of identity

in 3’. Q Is linear, bounded, positive and sel f-adjoint.

Then there exists a Hu bert resolution space (H,E)~ and a linear bounded

• operator K: (H. E) • (3m, F’), such that

1. Q — K K ’,

2. K Is left-miniphase,

• 3. The factorization Is unique up to a nmnoryless unitary transfonnation.

‘
~ The requir~~nts for a Hilbert resolution space are ~nore restrIctive than those for

a 3anach resolution space, namely £(~)‘ • E(~~
) is required for a Hu bert resolution

space, which condition does not sake sense in a Banach resolution space.

•
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The. III. 3(rlght.factorizatlon).

i. Q: (3, F) (B’, F’).

ii. Q Is l inear, bounded, positive and self-adjoint. Then there exists

a Hilbert resolution space (~, 
~

) and a linear bounded operator I:
- 

(B, F) ~ 
(
~
, 
~
), such that

1. QsT ’ I,

2. 1 is rfght-minlphase

3. The factorizatlon Is unique up to a semoryless unitary transformatIon.

The proofs for the above theorems are time-consuming and they are not our prima

concern. Hence, they will not be presented here. Interested readers are re-
ferred to the Appendix for their proofs.

Rep~~ducing Kernel Resolution Soac. (RKRS)

There is a coninon statement in each theorem of the previous paragraph, i.e.

Th* factorizatlon is unique up to a memoryless unitary transformation . For certain

applications such as the study of Banach space valued random variable, ~ would like

to elimi nate this au~1gu1ty. This is achieved via the concept of a reproducing

kernel resolution space. First, We define some notation.

Cef .III .2. Q, K, ant I are defined as in the previous paragraph

i.e. Q K K’ — 1’ 1. Let • R( K)~, HQ • R(T’ )~ . For x, y In R(K), let

(x , y) • (K~ x , K~~ y)ci, and for w, z In R(T’), let

(z, w)~~ — (I’ ~~~ z, T~~ w)

Define • K ~ IC1 on the HQ and I’ EtT*~
1 on I1~, then extend them to - —

~~~ Mote that C corresponds to C In mm. 111.2.

R(X) denotes the range ~f the operator, X.
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Then, we have the following theorem.

The.III.4. (HQ. ~L) (th. so—called RK~~
) defined above is a Hu bert resolution

space which Is Independent of the factori:atlon Q • K K’ used In Its definition.
Moreover,

~~. (4 ~~ , QE) Is unitarily equivalent to (H, E),

ii. R(Q) Is dense in HQ.

III. (F~)’ x • 0 1ff Et * — 0, for * c

iv. K: (H, E) : (HQ. QE). is memoryless,

where (H , E) corresponds to (H, C) in The. II!. 2.

Proof: I. H~ • R(K) , so H~ Is a linear vector space.

Ii. By definition, (x, y)~ — (K 1 x, K~ y)~. It j~Q
trivial to show that

1. ( x,  y ) • (y, x), for all x, y c He..

2. (x, cy) — a(x, y), for all a t  R, x, y C H R

3. (x , y + z) • (x , y),* (x, z) for all x, y, z t H~.

4. (x , x)~ • (IC1 x, K 1 x)~ O,for all x £ H and
Q Q

s ince K Is linear, x $ 0 Implies ~ L 
~ ~ 0. So

(x , x) 0, for x c H~ and x 0.

So (*~ Y)H~ is an inner product over HQ. 
Liii. Let (X

j ) be a Cauchy sequence In HQ~ then 
(IC is

Cauchy in H. So K 1 Xj z. for some : c H. But

z~~ iCt K z , sox 1 - ’ K z I n H. Hence HQ is a Hilbert

space.

Iv. Assume Q - K IC’ • K ’  K” , both K and K’ are lelt—minipnase
~I ~~ ‘I ~~

factarizations af Qon factor spaces (H, ~
) and (4’, i ’) ,  re-

spectively.

1. By heJtt. , there exists a nunoryless unitary transfor- 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~
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nation U: (i~f, ~) (i~’ , a ’ ), such that K U • K’ . So

R(K’) • R(K U) • R( K ) , since U Is onto. Hence is

independent of the factorizatlon.

2. (K’~ z, K’~~ w)~ , • ( ( K  U)~ z, (K U)~~ w)~ ,

• (U~ C
L z, U~ K 1 w)~ ,

• (K~ 1, K~ w)ç~1 for all

z, w £ So the inner product Is independent of the

factorlution.

3. K’ ~~~~~ K ’ 1  (K U) ~~ (
~ U)~~ - K U ~~~ U~ K~~

a K Et U U’ a K Ct

Therefore, 
0
E is also independent of the factorization. - -

v. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Then~~ is l-l

and onto and for all x £

I~ *Ii~ 
• Il K x f l 2 t IC1 

K x 11 2 11 * 11 2
H

Q ~Q

So Is a unitary mapping. Furthermore, we have

L ‘I

QE~ • K E~ K on H~ and for all z £ H~. there Is a unique

~~1 -Lx c H  such t h a t z • K x — K x .  S o x • K  i - K  z ,

I.e. K 1 • ~~~~~~~~~ Hence a ~ ?~ ?~. This means that

(Ha. ~E) is unitarily equivalent to (H, C).

v i. R(Q) • R(K K’) • Kt R(K’) ) a

SInc, R(K’) is dens. in H, so KtR(K’)] Is dense In

(for K is unitary).
vii. 1. K Is left-elniphas., so

C x • 0 1ff (~t)* K x • 0, for z

2. For all z a ~~~~~~, there exi sts * c H such that

z ’~~~x~~r x K ~~~z. So 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

- _ _



r ~~ K~~ z-0i f f (Ft)* z _ 0 .zc ~~Q.

3. 1? (pt)* z • 0, than

And if z • 0, i .e. K ~~~ IC1 i • 0, then

~~

K4z 0. so (Ft)*za 0.
“I ~~I “I

viii . K: (H , C) (Ha. QE) .  Is actually K defined in v. K Is l eft-einiphase,

so~~~x .0if1 I (Ft)*Kx. 0. Hence~~~x 0tff Q~~ K x — 0. for

x £ H. But since K — K , the above equation implies K Is also a
.“left-minIphase. So K’ a K is causal (by being left-niniphase),

and Z Is also anti-causal. Therefore, K Is rnemoryless.

Following iinnedlately from the previous theorem Is a rather interesting result which

gives us a sort of unlque left-factorization. This result is Indicated in the next

corollary.

Cor. Let ( . Q ~
) be defined as In Thm.III.4. Then there exists a left-factorization

P: (
~

, 
~~?) (B’, F’), such that

i. P z — z for all z £ C B’,

ii. P’b~~ Q b , for a1l b c 3 .

Proof: By Thm.III.4, we have ~: ~
... 

~~ 
a memoryless unitary operator, and

~~*— K x, for all x c i ~(. Define

Then

l. For a l l zc ~~~. t h e e e~is t s x d i such that I~ x ” z.

2. By The.1II.4 ,

q
�t Z 1 1 O i f f (Ft)* Za O , fo r zcH q. SO

q?t z 0 ifr.(Ft)~ P : • 0, for z c Hq. Hence P I s

left -miniphase.
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3. P ’b -(K K )’b .(K )’K’ b a K K * b u K I C ’ b a Q b ,

for all b c 3 .  And P P ’b — P  (Q b) — Q b .

The “uniqueness” we mentioned Is due to the fact that (He. 0E) Is Independent
of the factorlzation.

As In the previous paragraph, there are corresponding dua l theorems to Thin. 111.4.

These theorems are described below, with proofs only sketched.

Thm.III.5. (~~. q~). 
defined at the beginning of this section, Is a HIlbert

space which Is independent of the factorization , Q - 1’ 1, used in Its definition.

Moreover,

1. (kiq . ~
) is unitarily equivalent to (

~, 
~
),

II .  R(Q) is dense in

iii. (Ft)* x 0  1ff Et x • 0, for x c  H,

iv. 1’: (~, 
~
) (~~ . Q~)~ Is memoryless..

Proof: I. The proof of ~~~ ~
) being a Hilbert resolution space

and being Independent of the factorization is essentially

the same as that of Thm.III.4, and therefore Is omitted.
if . Define T’ : 

~!‘ 
) (~Q~ Qp~)I by 1

’ x • 1* x for a l l

* c 
~~
. Then Te is 1-1 and onto. For all x c

ll ~~ ~~ • III’ x~~ II (T’)~~ 1, •

So I is a unitary mapping . With T defined as above, ft

is routine to verify the rest of the theorem. But we need

to note that 1’: (
~, ~) (~

, ~ ) In iv ., Is actually

the i” defined above.
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Cor. (~~. Q~) defi ned as above, then there is a right-factorl:at ion (mini -
phase) of Q, q: (B. F) . (

~
, 
~

), such that

i . q x — Q x ,for all x i S ,  
-

11. q’ a • a, for all a c CS ’

Proof: By Thm.III.5, ~
, is msimryless and unitary.

Define q — I: (B, F) • (
~~. ~~~ Then

1. q xaT’Tx .T’ (rx) .Qx,far a l l x c s .

11. q’ a • (I’ 1)’ a • I’ I a • T(T a) — a, for all
I 
~ a c ~, si nce is unitary.

iii. By Thm.II1.5,

~~t
X a 0 i f f (Ft)* *.0, f o r x c ~~. So

Q~tx .01ff (F~)*q* x .O . fo rx c L ~. So q’Is

left -max iphase , i .e. q Is right-minlphase.

iv . q’q b . (~’T)’(~’I) b - 7 ’~~~’Tb • T ’ 1 b — Q b ,

for all b c B.

j_ J~n4ch Space V~lusd Random Var iables

One way to vi ew a random process is to consider it as a random variab l , which

takes values in a function space. Of course, we have to use an adequate proba-

bilIty measure to make the Idea work. Fortunately, this kind of measure has

been defined for metric sp aces 3’4 In this section, we fi rst defi n, stochasti c

properties such as ~nean and ~variance opera tor~ for a Banach space valued

random variable. We then look into the factorization of the vari ance operator

and the results that can be derived therefrom, i .e. the RKRS . Interesti ngly
1’ enough, the RKRS of a Banach space val ued random va ri able Is a Hilbert space .

This seems to be a nice resul t, but there are obstacles for further application.

All these will be discussed in the following .

I~~~ ~~~~~~~~~
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(1) Covariance Operator

A probability measure on Banach space Is a rather complicated matter. In the sequel ,

we implicitly asszmie Its existence as indicated by the expected value symbol E{’}. The

reader is referred to reference 4 for the details.

Let p. ~ denote finitely additive random variables taking values in a relexive

Banach space B. Ass~mi

1. E{ f (p, x’)I} c •, for all x’ c B’

Ii. E((p, x’)} Is continuous in x’. 
(a)

Then there exists a unique m c  B such that

E((p, x’)} (in , x )

Since E((p,x’)} Is a continuous linear functional on B’, so ft Is represented by an element

of B’  ~ B~ *s termed the mean of the random variable p . It has the following properties

1. in
p4i p

11. lIm~II ~
Ii 1. If 1: 9 • B, is bounded and linear, then

nL,.L m .

As in most stochastic processes , the mean Is not our prime conceri’i. In the sequel

we thus assiine that all random variables have zero mean. For the definition of the
variance operator, we have to assimle the following.

1. E(f (p, x’) (i, y’)J} c ., for all x’, y’ c B’,
(b)

Ii. E((p, x’) (ii , y’)} is continuous in x’ and y*•
It Is easy to show that ~ondition (b) Implies condition (a). Furthermore, we have the

following l. ~~ to facilitate the definition of the variance operator. 

- - — — ~~ .
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Lrma. A contInuous bilinear functional , (xfy) , on a Banach space B Is al so
bounded (i.e. there exists M c R such that

I(x Iy )I / (Il x Il .Ii y I~) cM , for all x, y c B).

Now If we fi x ,y’, then EC(,, x’) (w, y’fl Is a bounded linear functional on 3’
(hence an element of 3”8). This Implies that there exists a unique p,,, £ B such that

E((p, x’) (it, y’)} • (p~,,,, x’) for all  z’ £ 9~.

If we now define a mapping Q
9~~ : 5’ • By

0
it can easily be veri fied that Q is lInear. Morever , Q~~ is bounded, since

~ 
y’II — ll ~ ~ll • sup !E((o. x*) ( r .  v’)} L

I

• M f ~~y’ f f .
I lx ’lI

The operator 
~~~ 

Is termed the covar lance operator of the random variables p and i~~.

Covariance operators sati sfy the following conditons:

~ 
~(L~) (Kit) 

— L Q91. IC, where L and K are bounded and

l inear operators on B .

1L Let • Q~9; then

Q~~ Q + Q + 4 Q ,~.

Q Is called the varianc e operator of ~.

iii. Q a Q ,  In particular, Q~ Q3 .
1~

iv. q Is positive; 1... (Q y ,  y’) • E((p, y*):} ~~O.

(2) RK~Z Fir .~ !anach Soecs Valued Random Variables

Ii 2. As ment ioned In the previous paragraph, a refl exive Banach space ielued random

variable has a variance operator Q~ which is positive and se lf-ad.~oint. Then T!m~.I I I .

- - -—- -- 
_ 
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and The.IU.4 come Into the picture and we have the following: There exists a Hu bert

resolution space (H,E) and a left-factorizatf on (miniphase) K: (H,E).(B ,F) such that

— K K’. Moreover, the RKRS, (H9 , ,E), which corresponds to (i~QIQ
’
~) in The.III.4 is

also assured to exist. Since we have R(Q ) ~ H c B, one of the natural questions to

ask Is whether the random variabl e takes values only In N9, and, If It does, what can we say

about the original random variable. The answer to the first part of the question Is no, and a

counter— example has been constr*jdted.2 However, if we happen to have the random variable tak1h~]

values in H0, we would have the following properties. First define 3~ • R(K) 0, where

K: H • B. Then K L : 8~ . H and we have (K~~)’: H # B~. Consider

E((p, X) (p, y) }, for x, y in H0.

E((p, x) (p , y )} a E((K~ 0, (1 x)H (K
~ ~ K~

— E((p, (i(1.)* ~L x)80 (p, (K L)* ~L y)B0}.

Note: (IC hi* 1CL x and (K~j’ K
1 y are elements of 8~ , i.e. linear functional s

~ 
~~~

• By the Hahn—Banach theoren5’~~, there exist x’)and y’ In B’ such that

x’18 — (K 1)’ K~ x,
0

and 
~~

1 B - (K~
1)’ K~~~ y.

0

So

and ~ (IC1 )’ C~ x) 8 a (p, x’)3

(p, (IC~)’ CI >) 3 — (0, ~~~)3

Therefore,
E((~, x ) ( ~, y ) }  £~(p, x’)3 (p, y*)3}

a (Q
9 x*,y ) 3

- (KK’ x’, y’)9 — (K’ x*, K’y*)H
— (K 6x , ~6 

~~ 
a ~ y) Q

as such the random variable

_ _ _ _  ~~~i: i~i:ii~
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I

.

o has the Identi ty Operator on H as Its variance operator. The whole Idea can be
explained by the following example:

Example 3. Let r • 5/12 and h • (
~
, (1/2)r, (1/3)r, ...) ct3, where £3

~reai rn.m~~ r sequence Cy1) y~ Is finite). Let x be a zera—eear, random variable
1—1

taking values In the real n~~ er set R and let Its variance be 1. The o • xh is a random

variable taking va lues in Z.~. The dual space of £.~ Is £3/2 and £3 Is reflexive.•
(i) For all z £

E~(o,z)} — E((xh, z)} — E(x(h,z)}

•(h,z) E(x}— O.

Hence p Is zero—mean.
( I t )  For all a, W c L 312.

• 
E{(o, Z) (p ,W)} • E((xh,z)(xh,w)} • E(x2(h ,z)(h,w)}

• (h,z)(h,w) ECx2} • (h,z)(h,w)
d.~J! (Q9z, w).

Thus a — (h,z)h.
(III) Since the range of Q is 1-dimensional , the possible factor space is the

real sat R. Let K’ • £3/2 • R be the functional (h,).

then K — R • 
q,2 

a Is defined by the following equation,

(Kd,z) • (d, K’ a), for all dcR and zr23/2.
Since

(d, K’ a) — d K’ a a d(h ,z) — (dh ,z),

we have

Kd dh, for all dcR.

For all a c we have

KIC a • K(h,z) • (h,z) h — Q9z.
Hence , • K~C -

&
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(lv) Furthermore, we have
gg R(K~ F

t
) • 1R • for t ~ 0UO} , f o r t l

for

R(K~~t) a ~*çt tL3I2i

a ( K’Ft z

((h,Ft z)I Z £

,for t~~ l

L o  ,fort’l .

Mence , Et on R is the step function

U(t—l) • ci t > 1

~0 , t c l

(v) a. When Etd • 0,

case 1 Ct 1) • Ft — 0, ~ FtKd • 0;

ca s e 2 ( t
~~

l) ’E t • IR •l ,sod a 0 .

Thus Ft K d 0.

b. ~dhen Ft Kd 0,

case l (t~~~l ) a E  —0, soE d 0 ;

case 2 Ct > 1) • Ft1~ d • F
t dh • d Ft h • 0

However, Ft ft (7 , (1/2)r, (1/3)r, (1/1)r, 0, ...)

- ~ O~ where 1 ~. I ~~. t.

Hence, d • 0. Thus, Et d 0.

From a and b, K Is a left-miniphase.

(vi ) H,~ • K C R ] ( d h f d c R }

For d1 h, d2 ft £ ~~ the inner product is defined as

(d1 h, d2 ft)Q 
a ~ d2

(vii) Since o takes values in only, p can be considered as a zero-mean random

variable over I4
~ 
with the identity mapping on HQ as Its variance. This

statament can be verified easily. 

~~~~~~~~ ~~_ ~ —
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‘

Note, since the stochastic character of the given random variable, p. was derived
from the scalar random variable , x , It is appropriate that p can be characterized
com pletely In terms of Its representation in the one dimensional RKRS, H0 .

1. Scatterino Operator

Classically in network analysis, network varfables, such as voltage and current,

are assmed to be In Hu bert space. Al though the scattering variables are a very

useful tool In network analysis, the significance of the normalizing Impedance

used In their derivation Is not clear. Situations have occurred where we have to

ass.mie that the network variables are defined in Banach space. If the scattering

variables are to be wel l defined here , the function of the normalizing impedance

should be the transformation of network variables defined in Banach space into

elements of a Hitbert space. Theoretically, it is much easier to work with Ifi lbert

space. Therefore, the signIficance of the normalizing Impedance lies In the fact that

It transforms a problem defined in Banach space into a Hu bert space problem. In

this section, we wi ll extend the Idea of scattering variables to networks with their

voltage and current variables defined In Banach spaces wi th the help of the factor-

ization theorems developed in Chapter III.

Thinking of the Impedance Z, or the transfer function, as an operator from a ‘

current space to a voltage space , the power v.~ 
Is a scalar quanity. Here V denotes

voltage and I current, and the power equality Implies that the voltage plays the

role of a linear functional operating on the current. Thus, Z nay natural l y be

viewed as a mapping from a current space to its dual , a voltage space. Simi larly,

an adoittanca assizoes a dual role mapping voltage to current. In that case, “1” is

a linear functional over the voltage space. What model could be better than a re-

flexive Banaci’, space to fit the structure? Therefore, in this work, the current

and voltage spaces are chosen to be dual reflexive Banach spaces.

Unlike the classical case, the normalizing impedance (or a~n1ttance) operator is

not invertible, in general. Besides being positive, causal , l inear , and bounded,

-.. - -~~~.—- .---- ——-- .— — -
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we, however, also assume that th. normalizing Impedanc, is 1-1 . For this class

of operator, we have the following specia l factorization theorems.

The. V.1. Let 1: (3, F) (5*, F’), where B Is a reflexive Banach space,

be positive , causal , I—i , linear and bounded. Let M — 1/2 ( 1  41’); then M Is al so

positive and furthermore, sei f-adjoint. Then

1. There exists a Hu bert resolution space (H , ~
) and a left’factorlzatlon

of iq, K0: (H, ~
) . (3’, F’), such that K0 is teft-miniphase.

ii. There exists a Hu bert resolution space (H, ~
) and a rlght-factorization

of M, T0: (B, F) . (H, 
~
), such that T0 Is right-miniphase.

Proof: The existence of the left- and right-factorization follows from

The. 111.2 and The. 111.3.

Note here that we usa the same Hilbert space for left- and right-factor-

liation. This can be justified from the proofs of The.III.2 and The.III.3 in

Appendix. 
-

The. V.2. Let M be defined as above. If K: (H, E) ~ (3’, F’), is a linear

bounded operator such that
1. K is 1—1. and causal ,

ii. M K K ’, -

4’.

then there exists a linear bounded operator U: (H, E) (H, E), such that
a. K — K0 U, (1C,Is as defined In T1ILY.1.)

b. U is causal and unita ry. 

— —~~~~~ — -~~
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Proof: (1) For all y c H such that Ky c KOCH],

define Uy • ~~-L K y.

For b c B, we have

KX*b • KoKo*b c KOCH].

Hence U Is defined over K’CB] which Is densi in H.

For all y c K’fB], there exists x £ B such that y — K x and we have

IIUYI I
2
K ~~~~ Ky ‘‘ H — ~Ko~~ K K’ x ‘‘ H

— ,,1~ -L Ko Ko’ * ‘‘ H — ( ( Ko’ ‘‘ H

• (Ko’x, KO’ x) H

- (z,Ko K o’x)9
p

• Cx , K K’

• (K’ x, K* x) H

IIK* x I I 2
H II YI I 2H

Therefore, U is Isometric on K’f B]. U can thus be extended over H

Isometrically. -

(Ii) Similarly, define

V y - K L Ko y over Ko’CB].

V Is isometric and can be extended over If i sometrically.

(lit) For all h c H, there exists sequence C xi) In B such that

Ka’x1~~~h

This Implies

and
U V (K o’ xi) . U V h 

-_-_ --~~~~~~--~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~ __- - - _ _ _ _
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However,

-
~

• K~ K K’
• K’ x1

Hence

UV (Ko’x1) — ICO~ KK ’x1
- Ko~~ Ko Ko’
— Ca’ . h.

Therefore, U V Ii — h and U Is an onto mapping. Hence, U is unitary.
(iv) For all h ~ H, there exists sequence (xj I such that K’ . h.

We also have, 
-

K o U K ’ x i
_ K0 K0 L K K , x i a K o Ko L KO KO* xt
— Ko Ko’ x~ • K K’ xj ~ K h

but

Ko U K’ xj — Ko U h.

Hence

Ko U h — K h for all h c H, i .e. KO U • K.

(v) Since Ko U • K, we have
(Ft)* Ko Et U — (Ft)* Ko U , (Ko Is causal)

• ( F
t

) * K

— (Ft
)* K E

t, (K is causal)
_ (F t)*K O U E t

— (Ft). Ko Et U Et, (ICo Is causal)
Hence,

(Ft)* Ko E~ CEt li — Et U Et] • 0

This implies that Et U - Et U Et • 0, since Ko Is l e-ft-mlniphase .

Therefore, U Is causal.

•~~~~~
- _ -~ ._-~~~ - - —- —,. ~~ ~_ _ _ ~ - 

- - -  — — .
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The.V.3. Let N be defined as above. If I • (B, F) . (H, ~
) Is a linear

bounded operator such that I. I Is causal and has dense range.
ii. N — N T

T he n there ex1st s W s ( H ,~~ ) ui. (H ,~~ ) such that

a. T - W T o

b. W is causal and unitary.

Proof: (i) Define W’ y - (To’)~~ 1’ y, for y £ I CS] .
By similar argument as In lhe.V.2., Wr~ can be proved to be
Isometric on Its]. Since its] is dense in H, ~~‘ can be ex-

tended to H Isometrically. Also like In T)IU.V.2, ~~‘ can be
proved to be unitary.

s (II) Al so by similary argument, It can be proved that

Io’*-T’. HenceT-~~ To
(111) (F

t
)* 10* E

t ~~
‘ — (Ft)* To’ W’, (To’ Is anti -causal)

I

— 1* Et (I’ Is anti-causal)

• (F
t)’ to’ ~~

‘ E~

• (Ft)’ To’ ~~
Hence (Fe)’ To’ (Et ~~

‘ - E
~ ~~
‘ Et) -

This Impl ies that Et ~~
‘ - Et ~~

‘ Et 
- 0, since 10* is l eft-

maxiphase.

Therefore, ~~‘ Is anti-causal , I.e.

~ Is causal.

It Is trivial to show that If we have a causal and unitary operator U on

(H, E) then Ko li la causal and (KU) (KU)’ — N. Sim ilarly, If we have a causal

C

- - ~L~~_L_ 
- 

- - 
- 

-
— 

— -~~ _s_ - - ~~~~~~ —
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and unitary operator ~ on (H, ~) ,  then ~ To is causal and (
~ To)’(~ To) • N.

The signifi cance of these facts Is that they enable us to choose causal

and unitary operators U I W as desired in order to m ake the factori zat ion satisf y

some additional requirmeents. Unfortunately, the proof of existence and the

construction of these U & W Is currently beyond our reach, even though I t Is

trivial to do so in the classical case.t° With this in mind , let us now con-

sider the following network:

f~~~~~~

I

~ 

zo 
_ _ _ _ _  

Z~ 
1

a. n-port network series loaded b. optimal matching situation

Figure 1.

In the figure, we have
1 t a ’ t~ cB • a reflexive Banach space
2. Va V

9
, V 1 c B’

3. Z0 , Z~ a (5, F) (B’, F’), lInear and bounded.

Although the circuit diagram Is as simple as shown in Figure 1, there are

certain requirements for the diagram to be well defined. They are

i. Z0 +Z0’is l—l

II. + Z.~ is 1— 1

111. Yg C R(Z0 + Zn’) fl R(Z0 +

From the diagram, we have

_ _ _ _ _  

_
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V1 +Z0 11 Va 4Z0 Ia•

Define — ‘a V 1 and 1r — 

~
-(I

~ 
1i~

, then we have Vr — Z0 1r~
Define tr ~ t1~ 

where S~ Is called the current-basis scattering operator, then

1r 11 1a 11 (Zo 4k)~’(z o 4 z 0’) I.~

so

S
t 

— I~ — (Z0 + Z~)
ml (Z0 + Z0’) where Is the Identity mapping on current

space B. Mow let K and I be the factorizations of l/2.(Z0+ Z0!) as defined in

Thm.IV.2 and Thm.IV.3, I.e.

N — l/2’(Z0 
+ Z

0’) — K K’ - 1’ 1.
Define a • K’ I.~, b — ~ I~ and b — S a, where S is the so—called sacttering operator.

Ths
~ 
Ir 

a St I~ implies that

b - 5! (K’)
_R 

a, so b a 
~ 5
! (KlpY~ a. Hence

S — I 5’ (K ’y R 
— I (K’)

R 
-2 1 (Z + ,j

L K

— C - 2 1 K, where C a 
~ (K’Y~ and ~a 

- 

~ o 
+

t In order to have a causal scattering operator 5, we need a causal C. However,

C — I (K’)~~ Is not causal in general. By flmm .IY.2 and Thm.IV.3,

C ‘ W T~ (K0’) ‘~~ U, where K , I denote the left- and ri ght-factorl zati on re-

picetively. Therefore, the requirement for the selection of U & W is to make C

causal.
SImilarly, consider the following network, an n-port netwo rk parallel loaded by

an n-port net~rt. -

.4 tt
__

~

t. 
‘
~a 

~~~~~~

-

~
-;1 

~~~~ 

- ~: tg ~(3

a. parallel loaded n—port b. optimal matching situation
Figure 2.

_ _ _ _  - - --
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In FIgure 2 we have -

~ 1a’ tg’ I~ c B • reflexive Banach space.

11. V1i V~ ~‘

~~~~~ k : (B’, F’) (B, F), linear and bounded.

As before, cer tain requirements are needed for the circuit diagram

to make sence. They are

1. 
~‘0 ’k 1~~

1
ii. + Is 1—1

III. c R( Y0 + Y0’) fi R(Y0 ~• 
~~~ 

- - 
-—

With the help of the circuit diagram , the following equations can be easily

verified.

1
9 

• (Y0 + T0’) V .1 
~ o + TL~ 

V0
S + ‘(

~ “I 
ta + ~o 

‘a ’
tr ~~~~~ 

— Ii), ‘11r ~~ 1a — v 1.
— 

~
‘o ~r

~~ v v— S V1, where S is the so—called voltage—basis

scattering operator.

— 

~ L 
+ ~~)_L 

~~~ — ‘
~L~ 

1r~ 
+ 2a (Y 0 + Y0’), where

za - (k ~ fl_L

del del
a — Q’ V 1, b • P 

~r’ 
where P Q are the factorlatlons of

1/3’ + ‘
~
‘
~ 

— P’ P • Q Q’ as mentioned In flsn.IV.2 and Thm.1V.3.

a, where S Is the scattering operat or.

S a 
~ 

(Q,) _ R 
+ 2 p 

~ 
q • -O + z P Za Q~ where 0 - P (Q’)~~. — 

--- 
~
- - --- _ -—-- -

~~~~~~~~ ~~~ -_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _
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• SImilarly, In order to have a causal 5, we must have a causal 0. However,

0 — p (Q*)’”~ W ’ P0 (Q0*) ’R U’ , where P0, Q~ is the right- and left-fact ori zat lon
of 1/2 ( Y 0 + Y0’). Therefore the requirement for the selection of W ’ & U’ is to
make 0 causal.

On. of the most useful properties of scattering variables is that they give a

measure of the optimal transducer power gain. To see that this property still

holds for our generalized scatteri ng operators, let us consider the power~ enteri ng
the load network. For th. seri es loaded network ,

ta t r + !j — I~~ b + (K’)
4 a

- 

~r 
+ V 1 a 

~~ 
T~~ b + Z~’ (K’)~~~a.

So the power entering the loa d is gi ven by:

~~a ’ 1a~B 
— a - T ’

~ b, 10 b + 1
0
’ (K’Y~~ a) B

— ((IC’)~~~ a, Z~,’ (K*YR a) B - (T~ b, 10 I
’
~ b) 8

+((IC*) R a, Z0 T ’
~ b) B - (1 R b, Z0’ (K’)~~ a) B

• (a , C L Z0’ 
(K ’ )_ R a)H - (b , (T’)’~ 10 1

~R b)H

+ (a, K~ 10 T~~ b) H — (~~
.L 
10 T

_R 
b, a)H

— l/2(a , (L 20’ (K’IR a)H + l/2(K
_ L 

Z~* (K* )~~ a,

— l/2(b, (.r,) L 20 1
R b) H — 1/2( (y*y t 20 1

..R 
b, b)H

• (a , i,zr 1 (Z0’ + Z~) (K’)~~ a) H

- 
- — (b , l/2 (T’)~ - (Z0’ + Z

~
) T~ b) H

• (a , (L K K’ (K’)4 a) H - (b, (T’Y’ ~~
, I T~~ b) H

a (a, C)
~~ 

— (b, b)H 
- -- 

~~~~~~~~•—

• (a, a)N — (S a, S
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• (a, — (i, S’ S

- ~~ (!~ ~ S’ S) ‘~H’
The above equation lndicatu that for passive network, i.e.

~~~~~~~~~~ ~
- 3’ S must be a positive operator. And S’ S - for a lossless network.

The same result can be obtained for the parallel network.
Mow let us study an example.

Example 4. I. Let p , q c R ” , p~ .qand ~ .+~~ 1 1.

11. Let L,,~ be the current space, 
~q be the voltage space. We -

have £.p ~ tq.

~~~ ~~ ~~ be the embedding mapping from to Lq.

Then we have:
1. For all x ,y c4,

• (x , I y) - (x~ y) • x1 y1 - (y, x)
I 1

(y, I~~’ x).

Hence I ‘- Ipq pq•

2. I~~ is positive since

Cx. I x) — (x , x) • 
~ 

, 0, for all x c
I—i

3. Let 1p2 denote the embedding mapping from £
~ 

to Z~ and the

embedding mapping from to £.q~ Then

tpq tZq tp2

This relation can be explained by the following diagram.

~~~

L 
-
~~~
-

~~~~
- — —— — --- -- 

-

— — ---- — 
_

~i_ —~-~~~~~~~~~~~ - — -- ~ —~ -J~- — — —
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4. SInce we have

- 

-
•

• For all ~~~~~~~~~~~ we have

~
“ tpZ x) 2 • (~c~ x) 2

y x
1.1 ~

• 
(x ,y )

Hence,

‘p2’ y — y, for all y c f.2, I.e.,

• I ‘— Ip2 2q~
SImilarly, 

-

~ ‘ —I‘Zq pV

Therefore,

‘pq ‘Zq ‘p2 — 12q 12q’ 
a 1p2’ ‘p2’

5. It can easily be proven that t~2.and 12q are causal and anti-causal in

the usual time structure of the natural n~nbers. We also have

M ~~ 
1 (~ +

~~ ) .tT p q  pq pq

— I  ‘I — I  I *p2 p2 2q 2q

6. UsIng the formula derived for scattering operator with I 1p2 and

K we have

S 
~~ 

(t 2q*)4 
- 21p2 (!pq Z1)’’1 12q

I

_ _ _  
J~~~~ I~~~~~~~

T — i
~~~~~~~~~~~~~~~~ _ _  —~ii~ 

- J
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— 1p2 1~2
_R 

• 2 1p2 (!~ + Zt )_L tZq

— t~~
_ 2 I p~~(!pq +Z1,)4’I~q 

-

where 12 Is the Identity mapping on

The transformation involved can better be explained by the following

diagram:

* £
2

- 
~~~~~~~~\~ K 12q

T
~~ p2 £2

The scattering operator is meaningful when

V9 c R( I~~ + Zj (\ R (I pq )

and

1pq + Is 1— 1 .

Note in this example operator I~ is not bounded. However, boundedness

has nothing to do wi th the derivation of the scattering operator. Boundedriess

only guarantees the exi stance of the factorization. Once the factorizatlon

Is given, the derivation for the scattering operator follows through accord-

ingly.

Vt. Conclusions

The research herein originated with a discussion between one of the authors

and Professor Harley Flanders concerning the underlying mathematical nature of

electric networks . It was observed that in the scatteri ng formalism the

— 
- 

— -.-— 

—
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energy disapatlon of a n twork was given in terms of the norm of the network

• variables by

E — li eu 2 
— l i b i i

2

whereas, in the Imeittance formalisms the energy was given by the inner

product (or functional) equality

• E — ( v , 1)

Since a network Is fundamentally an energy proc essing system, one might initially

interprete these equalities as implying that the scattering variables are

naturally defined in a Banach space since only the norm Is required to define

their energy , whereas, the inmiittance variables for which an i nner product is

required to define energy, are naturally defined In Hu bert space. In fact,

the situation is just the contrary. The imaittance variables nay naturally be

extended to Banach space by working simultaneously with B and B’ whereas, the
development of the present paper Indicates that the scattering variable live M

in a Hf lbert space even when their corresponding imeittance variables are de—

fined in Banach space. Indeed, we believe that the primary contribution of

the present work Is the observation that certain problems naturally Nlive N in

HUbert space. Moreover, they may be transformed into a Hilber’t space even

when initially defined in Banach space.

Ii

—,
~~~~~- 

—-
~~~~~~~~~ — .— ~~~~~~ 

—.-- =~=-
-

~~ —~~--. — — 1_~~~~~__ ~~~~~~~~~~~~~~~~
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APPENDIX

1. Proof of Thm.III.2:

A. I. By flia.LIt.l, there exists a Iftibert space H and a
linear bounded operator K from H to B’ such that

Q a K K .

II. Define H R(K’) and K * KI H: H B’, then

K’: B”-B*H.

Iii. (K’ b, X)
H 

a (b, K x)3 (b, K X) g — (r b, X) H, for all

b c B, x c H.
* *SlnceK’b ,K b c H ,  so K * b a K  b, for all b c 9.

• _*
iv. X K * b a K K  b — K K  b~~ Qb , for all b eB. So

K K’ - K K’ a

v. Since H • K’CB] — K’(B), so K’-has dense range. So

K is l-l .

B. I. Define Ht R(K’ Ft) and let Et be the orthogonal projection

on H. Then (Et)Z — (Et)* E~.

ii. Since ll~ becomes R(K’) which is H, as t a, so

u r n  Et a TH (Et 1H weakly).

iii. When s <

H3 • R(K’ F3), Ht R(K’ Ft) and R(FW) ~ R(f
t).

Slnce Ft bl, F$ b+F(s,t) b,, for all b c B ,  and

for b’ g R(F5) , b’ — F3 b ’, so -

Ft b a Ft (F3 b’) + Fts,t) (F3 b’) — F3 b’ • b’,

I.e. b ’ c R(Ft). So R(K’ F5) ~ R(K’ F
t) and

H3 — R(K’ F3) ç, R(K’ Ft) • Ht. So Et E~ • E
5 r • E3.
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- lv. With E defined for all (-a ,t) , t £ R, £ can be extended to

~(R) uniquely to be a spectral measure, i.e. a resolution of
Identity. -

v. Since Et(H] a H~ 
a R(K’ pt), by definition, so K’ Is a right.

aixip hase (Oef.lI.5). So K is a left-iiiniphase (The.II.8).
- 

- C. 1. Let ~: (ii, ~
) * (B*, F’) be another left-mi niphase factorization of Q.

- 
- ii. Define U on R(~ ) by U (

~ 
b) a K’ b. U is well-defined, for If

“I’

• K b a k  a, then

K K’ a • Q a — a — ~~ b • Q b K K’ b. But K Is 1-1 , so

- K’ a - K ’ b.

• lii. For an ybcB ,

~~~ 
2 2

11 W K b f l ~ — f~K’ bf ‘ H • (K’ b, K’ b)H
• (b, K K’ b) B — (b, K K b)3

~ (K b, K b)~ ’ - I lK bJ~~ ‘

so U is Isometric on R(r) . S Inca R(~
’) is dense In U can be

ismetrically extended to H.
iv. For all z ~ R(r) , z — IC x , for some x c B, hence

“4~* “ “4.. “I

K W z — K W K  x K K ’ x — K K  x K z .  So

K U  • K over R(?~). So K U • K over H via continui ty as

U extended to H.

v. By the same argument, there exists V : H H, V Isometric, such that

~~V a l ( . SoK U V — K , and hence
-

• U V a since K Is 1—1 . S imilarl y, V U

-- —-~~~~~~~~~~~-------— . _-- A
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vi. W I t h K W a K , we have

(Ft)* K Et U — (Ft)* K U — (Ft)* k — (Ft)* ~

• (~t)* K U — (Ft)* K Et U

(K , K are causal). So

(Ft)*K(Et W _ E t W~~ )z_ 0 f o r a l l z c H , hence

Et (Et U • Et U ~~ 
) a • 0, (K Is left-elniphase ) ,

i.e. Et U • Et U ~~~ , so U Is causal .

vii. Similarly, V is causal. But U a V’ which Is anti-causal (Thm.II.6),

so U Is memoryless.

2. Proof of Thm.tII.3. -

• Define I - K’,- then 1* • K, and define • R(T Ft). Then

the rest of the proof follows as in Thm.III.2.

I - 
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R. Saeks R. A. DeCarlo
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ABSTRACT

A general ization of the classical Nyquist stability criterion to nonlinear and
time—varying systems is obtained via an appropriate homotopy argument in the space
of causal invertible (possibly nonlinear) operators. Although the resulting
stability test is only a sufficient condition in its most genera l form it reduces
to the classica l necessary and sufficient N,yquist criterion for linear time-
variant systems characterized by a transfer function or transfer function matrix.

Al though appearently abstract the homotopic nature of the proof proves to be quite
transpearent and , as such, many of the classical sufficient conditions for non-
linear or time-varying systems can be derived from the generalized Nyquist cri-
terion by simpl y constructing a homotopy (continous deformation) from the given
system to a ststem which is known to satisfy the generalized Nyquist criterion.
This is illustrated via a simple derivation of the Circle criterion as a corollary
to the generalized Nyquist criterion.

INT RODUCTION

When one discusses alternatives in multivariabl e control the classical debate

between the advocates of frequency and time domain techniques usually comes to the 
-

fore. The former is highly intuitive but restricted to linear time-invariant sys-

tems whereas the latter is amenable to efficient computational procedures and is

readily extendable to nonlinear and time-varying systems. A third alternative is

the operator theoretic approach wherein the system is modeled by an operator on

Hu bert space. In the view of the author such an approach to the control problem

achieves the best of both the time and frequency domain techniques. Since the 
- 

-

operator theoretic model is defined in the time domain the resultant control tech-

niques often hold for nonl inear and time-varying systems. On the other hand , oper-

ator theoretic techniques are formally quite similar to the operational calculus

associated with the frequency domain. As such , the intuitive character of fre-

quency domain control theory often carries over to the operator theoretic approach.

*Thjs research supported in part by AFOSR Grant 74-2631. 
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The purpose of the present paper is to illustrate the potential of the oper-

ator theoretic approach to multivariable control via the derivation of a general-

ized Nyquist criterion which is applicable to nonl inear and time—varying systems

modeled by finite gain operators on Hilbert space. Although only a sufficient

condition, in general , the technique reduces to the classical necessary and

sifficient Nyquist criterion for linear time-invariant multivariab le systems’’2

and it appears to be “tight” in the general case.

Al though the derivation holds in an abstract Hu bert Resolution Space3 for

the sake of brevity the present discussion will be restricted to the case of

systems defined on the space L~ composed of n-vectors of square integrable funct-

ions. For this space we defi ne the norm

1. 11 2 
= f f(q)tf(q) dq

R

and a family of truncation operators pt :L~ —i L~ by

2. (p tf) (q) = ,1f(q) q < t
q~~~t

An operator T:L~ ......... ~~~ L~ is said to have finite gain1 if there exist constants M

and N such that

3. l iTfi l < M II f I I + N

for all f in L~. In some sence the constant M plays the role of a norm for the non-

linear operator 1. Of course, for linear operators M may be taken to be the

norm of I with N = 0 in whic h case I has finite gain (f and only if it is bounded.

In the nonlinear case if an operator has a finite Lischitz constant then it is al-

so a finite gain operator though many finite gain operators do not admi t Lip-

schitz constants .~

We say that an operator T:L~ )L~ is causal 3 if
&

4 Pt1 -
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for all t. it is easily shown3 that the causal operators are closed under oper-

ator addition and multiplication and l imi ts taken in the topology defined by the

gain constants M and N. Unfortunately, they are not closed under the operation of

operator inversion. A classical exampl e of this is the unit delay whose inverse

is a predictor. Indeed, the question of determining whether or not T~ i s causal

from the properties of I is completely equivalent to the question of determining

whether or not a feedback system is stabl e from the properties of its open loop

gain1 ’3’4 5’6. As such , the following discussion of the generalized Nyquist cr1-

ten on will be formulated in terms of the problem of determining whether or not the

Inverse of a causal operator is causal , the solution to the feedback system sta-

bility problem being obtained by applying these results to the return difference

operator. 3

THE NY QUIST CRITERI ON

The classical Nyquist criterion is usually formulated in terms of the degree

of the system frequency response. For such frequency responses, however , their

degree is simply a representation of their homotopy class7’8 and hence we formu-

late the present discussion in terms of homotopic operators. In particular , we

say that operators T~ an d T1 are homotopic in the space of causal invertibl e

operators*, C(O ), if there exists a continous operator valued function 1:1 C(0)

mapping the interval [0,1] to the group of causal invertible operators such

that 1(0) = T0 and T(l) = Tl~ 
Our ma in theorem now may be stated as:

THEOREM: Let T0 and T.~ be f in inte ga i n opera tors wh ich are

homotopic in C(O) . Then if T~, has a causal inverse so does T1.

The proof is based on the following lema usually known as the small gain the-

orem1 ~
1

*80th the operators and their inverses are assumed to be f inite gain but the
inverses need not be causal.
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Lenina: Let T be finite gain causal operator for which M c 1.  Then , If the oper-
ator (1 + T) ha s a finite gain inverse, the Inverse Is causal.

A proof of the l ema appears in refe rence 1 and will not be repeated here .
Proof of the Theorem: Let I be a homotopy from T0 to and assume that 1(t0) has

a causa l inverse. Now let ~t 
— t0f < ~ and write

5. T(t ) 1(t0) + (T (t)-T (t 0 ) )  ( 1 + (T( t )-T (t 0))T( t 0)~~] 1(t0)

By hypothesis (T(t)-T(t0
))T ( t0Y ’ -Is causa l and has a gain constant M < 1 If c Is

• chosen sufficiently small (by continuity and the fact that T(t 0Y ’ if finite gain) .

Moreover ,

6. [1 + (T(t )-T (t 0))T (t 0)~~) -l T(t 0)T(t~~
1

exists and is finite gain since 1(t 0) Is finite gain and 1(t) has a finite gain in-

verse by hypothesis. As such , the small gain theorem implies that

7. T( t) 1 
= T(t 0)~ [1 + (T( t )-T( t 0) )T (t 0Y~] -l

is causa l since It is the product of two causa l operators. Finally, since the

[0,1) interva l is a compact set one can piece together finitely many c —intervals

to show that 1(1) 1 
= ~~ Is causal if T(O)~ = i;’ Is causal , thereby completeing

the proof.

APPLICATIONS

Intuitivel y the theorem states that the property of a finite gain causal

operator having a finite gain causal Inverse is an invariant of the arcwise

connected8 component of C(O) in which the operator lies . To obtain a test for

causal invertib ility it therefore suffices to show that a given operator lies in

the same arcwise connected component of C(O) as an operator which is known to ad-

mit a causal inverse. In particular , the following corollary reduces to the

classical Nyquist condition for linear time i nveriant multivar lab le systems.

Corrol1ar~y: Let I be finite gain operator which Is homotopic to the identity

operator in C(O). Then I has a causal inverse.

- -— - - - —--- -~~~~ —~ -- — - -—-----.-——. . 
- —- —------
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Of course , the identity in the above corollary could equally well be replaced

by any operator satisfying one of the classical sufficient conditions for causal

i nver ti b I l i ty1 ’3~ operators satisfying the conditions of the small gain theorem1 ’3~
monotonic operators3, operators of the form 1 + S where S is strictly causal 3’7,

etc. Interestingly, however, each of these classes of operators lie in the

same arcwlse connected component as the identity and the fact that they admit

causal Inverses is most easily derived from the above corollary rather than con-

versely. Another such class of operators which fall in the same arcwlse connected

component as the identity are the causal operators for which zero lies in the un-

bounded component of their resolvant set. Indeed, the proof that such opera tors

admit causa l inverses appear ing in reference 9 is almost identical to the proof

of the present theorem but with a restricted class of homotopy . In fact, the pre-

sent theorem is a simple extension of the earlier result though considerably

tighter. In par ti cular , the result of reference 9 is not necessary and sufficient

in the linear time-invariant case and assumes that the operators involved admit

finite Lipschitz constants .

An alternative way of looking at the above theorem is as a perturbation

theorem wherein large purturbations are allowed so long as they are continous re-

la tive to the operator topology defined by the operator gain. As such , it should

not be surprising that many of the small perturbation results of classica l sta-

bil ity theory follow from the generalized Nyquist criterion . For Instance , one

may derive the circle criterion 1 via a two step homotopy. First , one deforms the

nonlInear term to a linear (lying In the middle of the sector associated with the

nonlinear ity) and then one deforms the resul tant linear system into the Identity

operator via the classical Nyquist criterion. Here , a combination of the sectoral

bound1 and the requ i rement that the spectrum of the linear part of the system lie

outside of an appropriate disk suffices to assure tha t the opera tor l ies in C(O) at

every point In the homotopy and hence justifies the application of the Theorem.

_ _  

- J
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Of course, once this homoptopic point of view Is adopted , numerous generalizations

become appearent.

CONCLUSIONS

The purpose of this short paper has been two-fold. First , we believe that the

generalization of the Nyquist criterion presented m a y prove to be an extremely

powerful tool of stabil ity theory. Indeed , we conjecture that this singl e ele-

mentary results subsumes most, if not al l , of classical stability theory. Second-

ly , however , we believe that it illustrates the power of operator theoretic tech-

niques in control which have the potential of achieving the best of both the time

and frequency domain worlds. Indeed, such techniques yield natural and intuitive

generalizations of the classical frequency domain concepts withou t the linearity

and time-invariance restrictions usually associated therewi th.
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ABSTRACT
Cl assically the study of closed loop system stability is approached through fre-
quency domain techniques, e.g. the Nyquist and Hurwitz criteria. In the nonlinear
case frequency response is not well defined ; however, one of the authors has re-
cently shown that the spectrum of a nonlinear operator can be used in lieu of the
usual Nyquist plot as a means of generalizing the Nyqui st criteria to the nonl inear
case.

Through some perturbation techniques we characterize in this paper the stability of
nonlinear operators by the more accessible “approximate point spectrum ” as
opposed to the entire spectrum.

I. INTRODUCTION

Recentl y one of the authors demonstrated that the stability of a closed loop
system rests squarely on knowled ge of the spectrum of the operator which represents
the open loop gain. (1) The system may be nonlinear , multi variable , and/or time-
varying. For a linear operator representing the open loop gain the spectrum and
frequency response coincide , however , computation of the spectrum of a nonlinear
operator is not , in general , a tri vial exercise. (1) (2)

This paper shows that knowledge of the more easily computed approxima te point

spectrum is adequate to answer the stability question . (3) In reference 1 , it Is

shown that if the spectrum of the operator (representing the open loop gain in a

unity feedback system) does not encircle “-U’ then the system is stable. Essentially,

this is equiva lent to the requi rement that the component of the resolvant (the
complement of the spectrum) contain the point “-l” —-- i .e., “-1” is not disconnected

from In finity by the spectrum. It Is shown here that the infinite component of the
resolvant and the infinite component of the complement of the approximate point
spectrum are identical. Thus if the approximate point spectrum of the afo re-
mentioned operator does not encircle “-1” , then the sys tem is stable.

Finall y the set of complex numbers (A y(w)/x(w)~ , where ~(~
) and ~

(
~

) are the
Four ier transforms of the in put and output respectively, is shown to contain the

approximate point spectrum.

*Thfs research supported In part by Air Force Office of Scientifi c Research Grant
AFOSR 74—2631.
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In some cases this set i s very large and can be the whole complex plane . This

objection is offset somewhat by the fact that the spectrum of tri vial nonlinea r
operators , such as a squarer, may also be very large.

II. THE APPROXIMATE POINT SPECTRUM AND STABILITY

All operators map L~ to i tsel f unless otherwise specifi ed. An operator W is causal

if whenever

x(t) 2 y(t) t c 1; f,g in L~ (1)
for some 1, then

(Wx )( t) (W g)(t) t < T. (2)
The norm of W, ~w J ~ 

is the usual Lipschitz norm. W is stable if it is both
t causal and bounded. (4) (5) The spectrum of an operator, W (possibly nonlinear),

is the set of complex numbers x , such that the operator (x - W) does not have a
bounded inverse.* c~(W) denotes the spectrum of the operator W. a (W) is a
compact set. The resolvant set of W is p (W) which is the complement of the

spectrum of W in the compl ex plane. Clearly p(W) is open .

The following Is a recent theorem by one of the authors. (1)

THEOREM 1: Let the open loop gain of a (possibly) nonlinear feedback system be
represented by a stable unbiased transformation K, mapping L~ to itself. Then if

the spectrum of K in the algebra of Lipschitz continuous unbiased operators does
not encircle the point “-1” , the feedback system is stable.

The theorem says that the closed loop system is stable if “-1” is in the infinite

component of the resolvant. For the case of a single input sing le output , l i near ,
time invari ant system whose open loop gain is characterized by the frequency

response 11(w) the Nyquist plot for H(w) is precisely the spectrum of the open loop
gain. Hence the above theorem coincides with the classical Nyquist test. H

Typically the spectrum of a nonlinear operator W is difficult to compute. A
characterization of stability using the approximate point spectrum offers a more
accessible route, at least theoretically. To this end we denote the approximate
point spectrum of the (possibly) nonlinear operator W as it(W). w (W) is the set -

•

of all complex numbers, ~, such tha t for a l l  c > 0, there exists an x ~ 0, such
that (x — W)xI I ~~. ~ I lx i . IT(W) is a closed set an d con tains the po i n t

spectrum (the set of complex A , such that there exists x satisfying Wx = xx).
We denote the complement of ~(W) by ‘y(W). A complex number, y, is in y (W) if

*The symbol (x — W) where A is a scalar is used to denote the operator (xl - W )

where I Is the identi ty operator. 

-- —~~~-- . _ - - - --
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there exists an c > 0, such that I ( ( x  - W)xI~ > d x li , for al l  x ~ 0. In

proving theorems this definition seems to have more utility as in the follow ing
proposition.

Proposition: ir(W)c c,(W).

Proof: Suppose x ~ a(W). We show A ~ ir (W) implying n (W) c a(W). Since X ~ a(W)

we have (A - WY~ exists and is bounded. Wi th this fact consider the norm of x.

II x I i = IJ (x - wY 1 (x - W)x ii < ii (x - W)~~l I iI (x - W)x li (3)

Setting c l/ I I(x  — W)~~i I , we conclude that

ii Cx —W )xJ I ~~. 
c~ l x ii . (4)

Thus A ~ ir(W) as was to be shown.

Since ir(W)C ~(w) we have p (W)C y(W). y(W) and p (W) are open sets since they

are the complements of closed sets. As with any set, both are the union of their
connected components. Both contain a unique infinite component. Necessari ly, the
infinite component of y (W)  contains the infinite component of p(W). A corollary
to the following lemma shows that these infinite components are, in fact , identical.

Lemma L: Let W be a (possibly) nonl inear operator. Let 
~a 

be a connected
component of y(W) . If 1a contains a point in p (W), then YaC p(W) .

Proof: Essentially we show that each connected component of p(W) coincides with

a connected component of y(W). Let be a connected component of ~~W ) .  Suppose

a point p is an element of both 
~
‘a and p (W). Suppose further that q is any other

point in and that £ is a path connecting the points p and q. H
Since p is in the resolvant, (p — W)~~ exists and is bounded. The task is to show
that (q - W~~

1 exists implying 
~~~ ~

,(W). Combining this fact wi th the above pro-

position , we will have every connected component of p (W) coinciding with some

connected component of ~(W) .

The idea of the proof is to use the definiti on of y(W) and the compactness of the

path , t , to find an c-ball about the point p, such that for any x in the c-ball ,

(x — W ) 1 exists and is bounded. It turns out that the c-ball depends only on a
single constant Thus a finite number of c-balls can be pieced together along

the path , 2., so that the arbitrary point q is in the resolvant. The details now

follow.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I

By definition , for any A in 
~a’ 

there ex ists an m
~ 

> 0, such that

I I ( x  — W) x l j  > m
~(I x II (5)

for all x in L~. We can choose m
~ 

continuously by taking

sup {m~} (6)

where the sup is taken over all m
~ 

satisfying the above inequal i ty. This modi fies
the inequality to

Ii (x — W)x lI >~ i,j Ix li . (7)

Since the path z Is compact, i~ achieves its minimum for some A in t. Define m *

• 
mx > 0. Thus for all A in t we conclude

ii (x — W)x (J ).m ii x i i  (8)

Consequently if A is in 2. and (x  - W)~~ exists , then

• Ii (x — W)~~iI < 1/rn. (9)

It remains to show that (x - W)~~ exists for all x in 2.. Define Sm (P)
{x/lx — p~ .c ml to be an rn—ball about the point p. Let A be in Sm(P)i then

• (x - w) (( A - p) + (p - W) ) = ((x - p)(p - W)~~ + l) ( p  - W). (10)

This factorization is valid since (i — W)~~ exists and ~s bounded . The norm

tI (x - p)(p - W)~~ I J < J x  - p~ H(p - W)~~ Ii < m (l/ m ) = 1. (11)

By the contraction mapping theorem

[(x - p)(p - W )~~ +

exists and is bounded. (6) Since (p - wY~ exis ts and is bounded , the same i s
true of Cx — W)~ for all x in S

~
(p).

All p in t. such that (p - WY 1 exists and is bounded can be enclosed by an

c—ball , S (p ), where c depends only on rn , which depends on the path ~~ . Piecing
a finite number of c-balls together we conclude (q - W) exists and is bounded .

Since y( W ) is open, each component of y(W) is open. Thus for any point q in

there exists a path and a number m m(&), such that every point in is in ~(W).

Thus the theorem is proved.

Corollary 1: The Infinite components of 0(W) and y(W) are identical .

•

- ~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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Corollary 2: p (W) is the union of some subset of the set of connected components

of y(W).

Proof: Pick all components of y(W) which contain a point in p(W). By the above

H lemma, their components are contained in p(W). By the previous propositi on the

result follows.

Corollary 3: Let W be a bounded operator. If y(W) has only one component, then
a(W ) = ir(W) .

Proof: Since W is bounded y(W) and p(W) contain identical infinite components.

Therefore since there is only one component of y(W), p (W) = y(W) implying that

a(W ) = ir(W).

With these statements as a base, a modified general Nyquist criteri a follows.

THEOREM 2: Let the open loop gain of a (possibly) nonlinear feedback system be
represented by a stable unbiased transformation , W , mapp in g L~ to itself. Then
if the approximate point spectrum of K in the algebra of Lipschitz continuous
unbiased operators does not encircle the point “-1” , the feedback system is stable.

Proof: We remark that “not encircle — 1” is equivalent to “-1” in the infinite

component of the resolvant. Thus “-1” is in the infinite component of y(W).
Therefore if the approximate point spectrum does not encircle “-1” nei ther does

o( W) and conversely.

III. A COVERING OF THE APPROXIMATE POINT SPECTRUM

For a l inear single input single output operator, H, the frequency response 11(w) =

y(w)/x(w), where y(w) and X(w) are the Fourier transforms of the output and input
functions respectively, is the spectrum. In the nonlinear case , it appears that
the relevent object to study is in fact {y(w)/x(w)} since it offers a covering of

the approximate point spectrum even though H(w) is undefined .

Let W be a (possibly) nonlinear operator. Suppose Wx = y. Define S(W) = Closure
(AlA 2 y(w)/x(w) where y(w) and ~~(w )  are Fourier transforms}. With these assump-
tions we have the following lemma.

Lema 2: n(W)C S(W).

Proof: Suppose x ~ S(w), then since S(W) is a closed set

Ix - (12 )
x (~)

for all x ~ 0, for all  w , and some £ > 0. Now by P~rsevals equality 

_ _  
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I

iI ( x - w ) x 11 2 i Ix x( w )  - y ( w ) 11 2 (13)

- (w)i2 dw (14)

- Jix - 
Y (w )

I
2

i~~~~) i 2d (15)
-~ x (w )

= Ix - 
(w o)

i
2 
J~~
(w)i

2dw (16)
x (w 0) -~

by the mean value theorem. It now follows that (16) is greater than e2iI x t f .  The

lemma Is true.

Suppose Wx = x 2. Utilizing the global inverse function theorem, one can show the
spectrum of W to be the whole complex plane . (7) (8) Thus one could expect the
set S(W) to be large. For appropriately restricted weakly additive operators y(w)

is well defined in terms of x (w) and knowledge of the operator W.

IV. CONCLUSIONS

Apparently the approximate point spectrum is the interesting object of study in

the stability question . Moreover knowledge of n (W) offers a sufficient condition

for when ,(W) = ii(W). Perhaps a variation will offer a necessary and sufficient

condition . Lastly the set S(W) covers i(W). The set S(W) is intuitively satisfy ing

since it can be interpreted as the frequency gain or frequency response of the
system.
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A NEW CHARACTERIZATION OF THE NYQUIST STABILITY CRITERION*

R. DECARLO & R. SAEKS

ABSTRACT

The usual proof of the Nyquist Theorem depends heav ily on
the agrument principle. The argument supplies unneeded
information in that it counts the number of encirciements
of “-1” . Stabi l ity of a system requires an e~c i rclernent
or a no-encirclement test. Using homotopy theory, this
paper offers a more intuitive approach. We bel ieve thi s
approach will lead to practical generalizations. For ex-
ample , systems characterized by several complex variables
such as multi deminsional dig ital filters .

I. INTRODUCTION

This paper introduces a characterization of the Nyquist criterion using
homotopy theory, a branch of algebraic topology. The authors emphasize
the intuition and motivation for this approach. The hope is to aid
interested readers to further extend and apply these ideas. In this
ve in, proofs are omitted so as to simplify the presentation . Details
can be found in the references. With this philosophy in mi nd , le t us
define the type of system we will be discussing.
As illustrated in Figure 1 , let g(s) be a rational function in the corn—
plex variable s (bounded at s = ~~**) representing the open loop gain of
scalar single loop feedback system. The closed loop system has transfer
function h(s) = g(s)/Eli.~(sfl. The closed l oop system is stable if aBd
only if all poles of h(s) are in the open left half plane denoted by ~
(where ~ will denote the entire complex plane).

The Nyquist Criterion states that the closed loop system is stable if and
only if the Nyquist plot of g(s) (i.e. the image of the Nyquist contour

under the map g(.)) does not encircle nor pass through “-1” . If the
Nyquist plot passes through “-1” there is a pole on the imaginary axis;

if the Nyqu ist p lot enc i rcles “-1” ,0there is a pole in the open right
half plane , which we will denote by i.,. (~÷ wil l denote the closed right

~ This boundedness condition can be dispensed with & is added only to ease
the exposition.

*Supported in part by AFOSR Grant 74—2631d
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S

half plane). The following section constructs the required machinery
of homotopy theory

Figure 1
II. MATHEMATICAL PRELIMINARIES & BACKGROUND

Basic to homotopy theory is the concept of a path. A path or a curve in
the complex plane is a continuous function of bounded variation (2)’y :[o,l]-4.
y is a closed path if •r(O) = y(1). y is a simple closed path if y is a
closed path and has no self intersections. The image of I = [0,1) under y is
called the trace of y and is denoted by {y}.

-a; - -

Figure 2
Two closed curves and are homotopic in ~ if there exists a continuous
function r:IxI-.~ such that:

Intuitively, y
13 

is homotopic to if one can continuously deform in to
Moreover , it is easily shown that the homotopy relation is an equiva-

lence relation. (4) (5)
Another important property of a closed curve is its index or degree. The

index (2) is of closed curve, with respect to a point “a” not in [y} is:

n(y;a) 
~~~~~~~

- f (z-aY 1 dz
C 

V

- ~~~~~~~~~~~~~~~~~~~~~~ _ i_~~~~ —
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This integral measures the net increase in ang le that the ray r of Figure 3
accumulates as i ts tip traverses the trace of y.

:Figure 3
Intuition for the approach stems in part from the observation tha t n(y ;- 1) U
if and only if y is homotopic to a point in ~~~— (-1 ) (cf. prop. 5.4, ref. 2).
We will henceforth refer to such a y as being homotopicall y trivial . Conversel y.
y enc ircles “-1” If and only if ‘

~ carinotbe continuously deformed to a point
in ~~~

- {-1}. These Ideas appear to indicate that the Nyquist encirclement
condition is fundamentally a homotopy concept. The tuition is further
reenforced when one formulates the Nyquist criterion on the Riemann surface
(2) (8) assocIated with ~ map, f(s). Assuming f(s) is analytic on and
bounded at s=~, the Image of simply connected regions in are simply

connec ted i n ~ . To illustrate the point , let Fi gure 4-a be the image of
the right half plane under ë’(s). The region is not simply connected .

Figure 4—b shows the “same region ” as it might appear on an appropr iate
Riemann surface. Here the region is simply connected .

~fl
~~ 

. “

~~ ‘~~ ) r ~ ••‘.. ‘I ‘‘i ~ - - 
~ 

•
~

- — - — — — . 1  —
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f(s) In ~ and on the Riemann surface. On the Riemann surface the Nyquist
r test becomes an obvious triviality . In ~ It is mathema tically more delicate.

Our setting uses homotopy theory , a branch of algebraic topology , to establish
a topol ogically i nvariant relationsh i p between a metric space, X, and an
al gebraic group called the fundamenta l group of X , denoted by ~(X ) .  The
relationship is topologically invariant in that homeomorphic spaces have
isomorphic fundamenta l groups .
Specifically, the fundamenta l group is a set of equivalence classes of
closed curves. Each equivalence class consists of a set of curves homotopically
equivalent. The group operation Is “concatenation” of curves.
For examp le, the fundamenta l group of ~ consists of one element, i~, the
identity , since all closed curves are homotopic to zero. If X - (-f l,

then ~( X )  has a coun tab le num ber of elemen ts: i~ (the identity ) equal to
the equ i valence class of all closed curves not encircling “-1” and ~he

‘ remaining elements , 
~ 

(n 1 , 2, 3 ...) consisting of the equivalence class
of all closed curves encircling “-1” , n times . Moreover , 

~1 conca tena ted
with U

k 
Is equal to the element Uk+i.

Now let X and Y be metric spaces. Let f: X~V be locally homeomorphic. In
par ti cular , assume that for each point y in V there exists an open neighborhood
G of y such that each connected component of f~~(G) is homeomorphic to

G under the map f. Under this condition X is said to be a covering space
of Y. (2) (4) Also let ~r(X) and ~(V) be the fundamenta l groups associated
with X and I respectively. With these assumptions , f effects a group

isomorphism (i.e. a one to one into mapping preserving group operations)

between ii(X) and a subgroup of IT (Y) as in the following diagram (4) (5)

F

t
~~~~~~~~ C~ \\ ¼~~/ H

FIgure 5
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F is the functor which establishes the relationship between a topological
space and its fundamental group. Finally let us distinguish between a

cri tical poi nt and a critical value. A point z0 in  ~ is a critical
point of a differentiable function f if f ’ ( z 0 ) 0. A critical value of
f is any point w f(z0) whenever z0 is a critical point.
Now suppose f :~ -~ ~ is a rational function whose set of poles is P =

{P
1, ..., P,.~}. Let Q = (q 1, ..., q~} be the set of all points in ~ such

that f (q1) is a critical value of f . Note that there may be q. ’ s which
are not critical points. To see this consider g(z) ~z (z-a). g (0) a 0
impl ies “0” is a critical vlue of g, but g(a) 0 with g’(a) $ 0.
Finall y, define T (t~It 1 

- f~~(—l ), i-i , ... , n}. Note also that since
f is a rational function , P, Q and I are finite sets. Define X -

(PuQuT} and define I = f ( X ) .

Lenina 1: Under the above hypothesis , X is a covering space of V. This
leads to the follow i ng corollar y .
Corollary: The fundamental group 11(X) of X is isomorphic to a subgroup
N of it(Y).

This corollary says that a closed curve in X is homotopically trivial.
III. THE SCALAR CASE

Let g(s) be as described in the introduction . Appropriatel y define the
sets P, Q, and I and the spaces X and I so that X is a covering space
of ‘1. Also as per reference (10) and Figure 6, construct the ugly
Nyquist contour, %~

, and the usual Myquist contour, r, where r :t * u {= }

H

~~, /~~ ~~
:‘-

~~~~~~~~~~~ 1~? —

~~~ ~~ /

7 
_ /

‘ 

-

——p. 
- 

- 
- 
/

Figure 6-(a) Figure 6-(b)
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X indicates a point of P; ~ indicates a point of Q

Lemma 2: Under the above assumptions on g and XR~ 
h~s) is stable if and

• only if the path go~g does not encircle “-1” . (10)
At this point we must establish this l ema’s connection with the classica l
Nyquist criterion. To this end we compare the information of the Flyquist
plot, gor with the “ugl y” Nyquist plot, ~~~~

• Lemma 3: Let n be the number of poles of g in ~ ÷, then

~~ 
I (z-l Y1dz = i—i- ~ (z-l Y

1dz + n
go!’ 9OX ~~

These three l emmas give rise to the following theorem.
Theorem 1: Let g(s) be as above. Then h(s) is stable if and only if the
Nyquist plot of g(s) does not pass through “-1” an~ encircles “-1” exactly
n times where n is the number of poles of g(s) in

IV. MATRIX CASE
Let the entries of an nxn matrix G(s) be rational functions in the complex

variable s. Suppose G(s) characterizes the open loop gain of the sing le
loop feedback system of Figure 7.

~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

j
F igure 7

x (s) and y(s) are n vectors whose entries are also rational functions of
s which represent the input and output of the system respectively.
This article assumes each entry of G(s) is hounded at X = . Thus G(s)

as a mapping , G(.)j ~nxn , is analytic on ~ except at a finite number o~
points , the pol es of Its e:itries.
For Figure 7 to be well defined we requi re that det [I+G(s)]=O Thus there
exists a closed loop convolution operator, H, such that y = H*x. More-
over the Laplace transform of H, H(s) satisfied

H (s) G(s) [I+G(sfl~

— —-
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For this system to be stabl e, 11(s) must have all its poles in ~ and
have all its entries bounded at s =

Under the assumptions on G(s), the following factorization is valid:

6(s) = N(s)D~~(s)
where N(s) and C(s) are right co—prime , pol ynomial ma tr ices in s with
det[D(s)~~O. Moreover s0 is a pole of 6(s) if and only if it is a zero
of det[O(s)]. (9)

Dosoer and Schulman (3) have shown that the close loop operator H is
stable if and only if det[N(s)+O(sfl~O for s in and det[I+G(=))~O.
Using this fact, we state and prove the following:
Theorem 2: H is stable if and only if (1) the Nyquist plot of detEN (s)+
D(s)] does not encircle nor pass through “0~, and (2) det[I+G( )]~0. (10)
Observe that if one assumes the open loop gain to be stable (i.e. 6(s)
has all poles in 

~ f ) then det[t+G(s)~ i n the above theorem. Th i s follows
since for all  s i n ~ ÷ , det[M(s)+0(sfl= det[I+G(s)] det[O(s)] with det1D(s)]~O.
Thus in ~~~~. det[N(s)+D(s)] has a zero If and only if det[I+G(s)] has a zero.
Finally, it is worthwhile to point out the relationship between the above
formulated multivar iable Nyquist criterion and that formulated by~Bãv’man
and Katznelson. For thi s purpose we let x~(iw); j=l , ... , n; denote the n
eigenvalues of g(iw). In general parameterization of these function by iw
is not un iquely determined but one can always formulate suci~ a function .
Moreover these functions are piecewise analytic and can be concatonated

together in such a way as to form a closed curv e which Barman and Katzel-
son term the Nyquist plot of ((s).

Now , since
n

det[t + G(iw)) = 11 [1 + ~~~. (iw)]
j=l

and the degrees of a product is the sum of the degrees of the individual
factors and also equals the degree of the cancatonation of the factors, the
degree of the Barman and Katznelson plot with respect to “-1” coincides
with the degree of our plot with respect to “0”. As such , even thouch
the two plots are different their degrees coincide and hence ei ther can

be used for a stability test.
Acknowledgement: The authors would like to acknowl edge the contribution
of Or. John Murray (Dept.. of Mathematics , Texas Tech University ) whose
continuous flow of counter examples shaped the ideas presented herein.
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THE “FOURIER” TRANSFORM OF A RESOLUTION SPACE AND A THEOREM OF MASAN I*

R. A. DeCarlo, R. Saeks, and M. Strauss
Texas Tech University

Lubbock , Texas

ABSTRACT

Using two classic theorems (one of Mackey and another of Strone) and a

recent result of Masani and Rosenberg, this paper pieces together a generalized

frequency response theory for an abstract Uniform Resolution Space. The

present theory assimi lates past’work as done by Falb , Freedman, Anton , Masani

and Rosenberg, and one of the authors. The results of the paper are not new,

bu’ are merely a rearrangement of subtleties uncovered by the aforementioned

authors. An interesting consequence of this work was that an abstract Uniform

Resolution Space has both a “time transform” and a “frequency transform”. Such

a duality is not readily identifiable in an L2 function space since the time

transform, there, is the identity .

INTRODUCTION

Fourier analysis is basic to the design and understanding of physical systems.

The property that convolution in the time domain maps into a product In the fre-

quency domain , yields a theory both practical and aesthetically pl easing . Thisrote

provides what is hoped to be a generalized frequency response theory for arbitrary ,

closed, linear , time Invariant operators on a uniform resolution space. Previous

attempts at providing a general frequency theory have illuminated numerous sub-

tleties, yet still appear inadequate for one reason or another. Interestingly

enough, the mathematics necessary for such a synthesis is well entrenched in the

literature. This paper merely pieces these results together and reinterprets them

In ligh t of the work of Falb , Freechiian, Masan i , Rosenberg and Saeks.3’9’~
2’21

This research supported in part by Air Force Office of Scientific Research Grant
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Classical Fourier analysis consists essentially of two fundamental ideas--

the Idea of a “transform” from time to frequency and the property of a time-in-

variant mapping to a product of functions in frequency. We desire a Fourier

representation for time invariant operators defined on an appropriate space.

Two avenues arise. A traditional approach uses a Fourier-like integral to obtain

the representation.: In an abstract approach, the Fourier representation is a

spectral representation of the abstract operator relative to an appropriate spec-

tral measure. This road is both more general and elimi nates the need for a

specific representation of the operator.

Fal b, Freecknan and Anton3’5 developed a generalization closely paralleling
the classical theory. The formulation considers Hu bert space-valued L2
functions (square integrable relative to the Haar measure), defined over a

locally compact abelian (LCA) group, G, and operators which are characteri zed

by an L~ convol utional weighting function . The theory Is highly representation-

dependent and fits awkwardly into the setting of an abstract resolution space . - - i
In fact, the identity and unit delay are not admissable to the theory. The major

advantage is that one obtains an operator-valued Fourier representation.

Masani and RosenbergU
~

7 use a spectral theoretic vehicle to alleviate the

difficulty of a specific representation of the operator. Moreover, the theory

settles nicely into an abstract setting. Yet, the frequency response is always

scalar-valued , even In the multivariable case , and the concept of a “transform”
is absent.

Finally, Saeks21 has a Masani-l ike development whose Fourier representation

assuaws values in a suitably restricted class of operators. The advantages are the

compatibility with abstract spaces and an operator-val ued frequency response . Yet

still , the concept of a transform is missing and major existence questions are

still present.
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The structure of the present theory rests on the classic theorems of

Mackey7 and Stone4 and a recent theorem of Rosenberg and Masani ’10. Wi th this

coninent, we define the setting.

UNIFORM RESOLUTION SPACE

A resolution space is a pair , (H E) where H is a Hu bert space and E is a

spectral measure cn an ordered LCA topological group, G. On an ordered LCA group,

a spectral measure determines a resolution of the identity, and conversely. Thus,

it is advantageous to work with the resol tuion of the IdentIty Et =

rather than wi th the spectral measure E, as illustrated at the end of this section.
As an example, consider the Hilbert space, L2, together with the truncation

operator , Et, defi ned as
(Etx)(q) fx(q) q C t

1o q > t

or equivalently, the spectral measure, defined via

(E(3)x)(q) [x(q) q B

1° q~~~B
for all Borel sets B.

j n addition L2 admits a group U of shift operators U~, defi ned as

(Utx)( q ) = x(q - t).
Thus , the concept of time invariance is well defined in a classical L2 setting. :~

In genera l , a resolution space lacks the concept of time invariance. Such a

property requires an extension 0f the concept of the L2 “time-shift” . A group of

such operators, in general, fails to exist in an arbitrary resolution space.

In particular, we seek a strongly continuous group of unitary operators
(i.e., ~~~ Ut (U S)_ l for all t and s in G), such that

UtE(B) E(B + t)Ut

_i__
~~~._ I~~~~~~~~~~~~~I --
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for all t in G and Borel sets B. A resoltulon space, together with such a

group U of shift operators, U~, is a Uniform Resolution Space (URS), denoted

by the triple (H,E,U).

Underlying each URS is an ordered LCA group, 6, which, for our purposes , is
time. Associated wi th G is a “character group”, G, which Is the group of con-

tinuous homomorphisms from G into the multiplicative group of complex numbers of

magnitude one. Note that G is, in general , not ordered.

In l ike manner , attached to each URS (e.g., (H,E,U)) , defined over 6, is a
0dual ” character space (H U ,E)*, defined over G. E and U are a spectral measure

and a group of shift operators, respectively, defined via the two equal ities

U
t 

~ t c G

and

H

U 

~ J g(~ -t)dE(t) ‘i £ G..

Here, (T,-t) denotes the complex number of magnitude one, resulting from the oper-

ation of the character y in G acting on -t In 6, and where the integral is the

Lebesque integral. Stone’s theorem(4) assures the existence and uniqueness of E

and U.

Oddly, the character space (H,LJ,E) is not a resoltuion space since G is not

ordered. However, (H,U,E) displays all the resolution space properties which do

not depend on the ordering of 6. In fact , by Stone ’s theorem(6) ,(7),(l2) , U is a

group of shift operators for E, satisfying the Imprimitivity equality over 6--i.e.,

• E(S 4

• *We have adopted the ordering (H,U,E) because via Stone ’~ Theorem , E and U con4in
the same Information. Moreover, U and E do. Thus, (H,U,E) rather than (H,E U).
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For our purposes , the character group plays the role of frequency.

Now , the physical properties of causality, memorylessness, time invariance ,

etcetra, have precise descriptions In the unIform resolution space structure.

In particular, for bounded operators, 1, on (H,E,U), ca~usa1Ity Is equivalent to

EtT EtTEt; l~2~2O; anticausality , to EtT EtTEt*; memorylessness, to E
tT = lEt

which, in turn, is equivalent to 1, being both causal and anticausal . Since

memorylessness is a synmietric concept, it has an ana log in the character space ,

(H,U,E), whereas causality does not . Because of this , we say a bounded operator,

T, is time invariant if E(B)T = TE(B) for all Borel sets B of G. Via Stone ’s

theorem, this is equivalent to UtT = fljt for all t in 6. Clearly, we emphasize

the character space in the definition of time invariance .

In the case of unbounded operators , (e.g., the derivative operator), I is

causal if EtT C. EtTEt**; I i s ant icausal i f E~T — 
EtTEt; T is memoryless i f

EtT ~ lEt; and, finally, although somewhat non-intuitively, T is time invariant

If E(B)T ~~ TE(B) for all Borel sets B in G, where, again, we emphasize the

definition in the character space. For unbounded operators , Stone’s theorem, in

general , does not yelid an equivalent statement (such as U~I = Tut) in the original

resol tuion space . However , for the case of linear , single-valued , closed oper-

ators with domain dense in H, then U~I TU~ i f  and only i f  EtT~~ TE t.9~~ The

fundamental role of the character space becomes more clear in the following section.

EQU I VALENT SPACES

In this section, Mackey ’s theorem verifies an equivalence between an abstract

URS , (H,E,U) and a function space, (L2(G ,K), X 9, ot ) .  Now , the relevant infor-

mation contained In (H ,E,U) Is also contained in (H,U IE ) .  Thus, applying Mackey ’s

theorem to (H,E,U) (under the guise of (H,Ü,E)), another equivalence to

(L 2 (G ,K), c~~, X~) exists . Furthermore, (L2 (G ,K), XB, ~t ) and (L 2 (G ,K), ay, X e) have

and affinity via Stone ’s theorem.

hIf t E (C t , .]) I _ E t .
‘for an unbounded operatOr, 1, on~a resolution space, (N ,E ,tfl , tilt d~~a~n of E~Tis smal ler than the dc’j~a1n of it . As sudi, the conta1np’ont~ lndf cati thatwhere the 4~~~~~~ j n~~ . of £~T and lEt coincids , thei, £tT • ~~ t•



— ______

95
1

After numerous references throughout this development to the above authors ,

we, at last, precisely state their results. Hopefully, this will facilitate

understanding of the maps between the various spaces, hinted to in the above

paragraph. The following is a statement of Stone’s theorem for LCA groups.4’14

Suppose 6 ii an LCA group and G, Its “dual” character group; let (y, -t) be

the complex number of magnitude one, resulting from the operation of 1 in 6 on -t

in G; define E (E) as the a—algebra of Bore l sets of a(G); finally, let {Ut~t in G)

• ({ ti” Ii r In G}) be a strongly continuous group of unitary operators on a complex

Hu bert space, H, onto H. Then, there exists a unique spectral measure, E(~)

(E( )), for H on z(E), such that all t in G (y in G),

or 

U~ ~~~ 
-

?‘ 
eJg(r. -t)dEt).

The Initial task , now is to constru ct an equivalence between two 12 spaces via

this theorem.

Consider the URS, (L2(G,K), XB, 0t), and the character space, (L2(G,K),
a 1 , Xi), where G is an LCA group; G, its character group, X8, the characteristic

function of the Borel set B in E; at, the classica l shift operator (i.e.,

(atf)(q) — f(q - t)*, and, lastly, the measure on the space wil l be the Haar

measure, m.
Now, the Fourier transform maps L2 (G ,K) to L2(G,K) in such a manner that

is taken to the spectral measure on L2(G ,K), whose integral is a~. Similarly,

at maps to the unitary group on L2(G,K), whose associated spectral measure 1s~ Xe.
As such, (L2(G,K), o~

’ , X e) Is the Fourier transform of the character space for

(L2(G,K), X8, at). -

C ~~~~~ (~
t~ In G} and In th. ut of 8cre~ sets of 0) serve as the strongl yContinu ous group of shift  operators and the spactral mtasure, respectivel y.

—
— — -- — - — ~ - - — — -— - - -  -~~~ a~~ p ~~~~~~~~~~~~~ - — - - - —
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Interpreting this, we have XB completely determining c~ and X~, completely

specifying 0~~~• The link between these two spaces and an abstract resolution

space is Mackey’s theorem. The statement of his theorem for LCA groups follows 19

Let E be a spectral measure on the Borel sets of an LCA group, J, and let

U be a strongly continuous, unitary representation of J, such that

E(B + t)U t

for all Borel sets B of J and all t in J; then, there exists a unique Hu bert

space, K, and a unitary transformation , M,

such that -

(1) ME(B) M~~ — 
- for all Borel sets

- ofj; and

(2) NUtN~~ — qt for all t in J ,

where K is a complex Hu bert space and m, the Haar measure.

For an arbitrary URS, (H,E,U), defined over an LCA group, G, by design ,

E and U satisfy the imprimitivity equality . Moreover, the character space,

(H,U,E), possess the property that E and U satisfy the imprimitivity equality .20

Finally, it is clear that (L2(G ,K), X8, at) and (L 2(G ,K), a~, Xe) satisfy the

hypothesis of the theorem. Therefore , by blending Mackey ’ s and Stone ’s theorem,

the following coninutative diagram results:

(Ii, E Cu). U CE))

(L2(c.K). x9. a )~ (L~C~..x), a~ , ~j)
FIgure 1

Remarkably, the diagram reveals that an arbitrary URS is equivalent , under a

memoryless, time invariant, unitary transformation--a uniform resolution space

insomorphism , to an 12 space. Distinctions among the spaces for a fixed G,

~~This is the imprimitivity equality.
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therefore, depend only on the cardinality of the space, K.19 Mixing this

equivalence with a recent result of Masani and Rosenberg10, gives the desired

structure-—i.e., utime invariance” maps to multiplication .

APPLICATION OF THE MASAI4I-ROSENBERG RESULT

This section begins with the result of the above mentioned authors. The

theorem Is not stated in Its general form10, but is restricted to a group J, a

Hu bert space, K, and the Haar measure, m.

Let T be a closed, single-valued, linear operator with dense domain on

L2(J,K,m), such that T coutmutes with the operation of mul tipl ication 
by the

characteristic fu,tctlon of a Borel set-—i.e.,

x1T~~ Tx .  for afl B in !
— (the a-a~g.bra of ~lT Soiel

set~ of J)

The, there exists a measurable function, T on J, whose values are operators

on K, such that

(Tf) (j ) T(j )f(j) S in L .

This theorem applies to function space. Thus, to veri fy the sought after

properties on the abstract URS, we fist apply the Mackey Transforms as in Figure 1,

redrawn below for simplicity .

(H, £ (U) , U (E))

(L2 (G.~). x3, c )( ). (L2(G,K), q~
’, Q.

Our discussion dwells upon two types of operators in the abstract URS, memory-

less operators and time Invariant. First, we consider the time Invariant case .

Let I be a closed, linear, single-valued, time Invariant operator on

(H,E(U), U(E)). Recall that T is time Invariant If E(B)T~~.TE(B). Under the

_ _~__~~~~~~
z,. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - — -
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Mackey Transform, M (which we term the Mackey frequency transform), we have an

equivlent statement in (L2(G,K), a~ , XB), as follows :

x8Tj~~~T~x,~

where TA Is the Image of I under the M transformation. Clearly, the conditions

of the Masanl-Rosenberg theorem are satisfied. Thus, there exists a mapping,

T:G.4(, such that

(Th)(y) • T(y)h(y)

for all y in G and h In L2(G,~). This says that time Invariant, closed, l inear,

single-valued operators on an abstract URS are, as hoped, multiplications in

the “frequency domaln”--l.e., in (L2,(G,K),a1, Xi).

Now, let I be a memoryless, linear , closed, single-valued operator on

(H,E,U). Recal l that I Is memoryless if EtT lEt. Thus, by reasoning similar

to the time Invariant case, the image of I under the Mackey—time transform, M,

coninutes with X8 in (L2(G ,K), X8, a
s). Thus, it Is equivalent to a multipl i-

cation by the Masani-Rosenberg theorem.

This structure, then, shows that certain operators on an abstract URS have

the “right” properties. It is Interesting to note that there is a duality In-

herent in this formulation. The presence of a Mackey “time-transform ’ and a

corresponding Nfrequency_transformu is apparently nece~sery for the cohesive-

ness of the theory.

CONCLUSIONS

The above Ideas assimilate past theories in a number of ways. The theory

generalizes the Fa Ib-Freedman-Anton work because of the abstract setting and

because It Is valid for a larger class of operators. Clearly, there is no re-

striction scaler-valued frequency responses as in (9) and (13). Moreover, It

as
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In (21), given appropriate conditions, a mult iplication on a function space can

be viewed as an Integral over the spectral measure, defined via multi plication

by X, I.e.( T • t T ( ~)dX ( 4 .

Hence, the pre-image of I under the Mackey frequency transform in (H,E,IJ) takes

4 the form
I — f T(y)dE(y),

as was specifIed In (21).

In a private conversation with one of the authors, Desoer raised a question

about the fact that differential operators sati sfied the definition of memory-

lessness in an abstract setting. The question caused some doubt In our minds as
1;

to the appropriateness of the definition. This note gives a parital answer, in

that closed, memoryless operators are multiplications . Hence, the apparent

pathology noted by Desoer can only arise in the case of nonclosed operators .
t
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CEAI’TER I

INTRODUCTION

One technique which has been developed in recent

years for the operator theoretic study of systems is the

use of resolution space ( 1 ] .  The basic motivation behind

the development of resolution space was to overcome the

impossibility of defining time-based concepts such as

causality in the HUbert and Banach spaces which are the

setting for classical operator theory.

Resolution space techniques have been very successful

in achieving the goal of including time—based concepts in

operator theoretic systems theory, but the concept of time

which has been used is classical in nature. It has been

known since the early part of this century that an accurate

model of the physical universe must be based on the concept

that space and time are intimately connected. This is the

central thesis of the theory of relativity formulated by

Einstein (2]. Classical resolution space techniques ignore

this connection between space and time, and thus, it might

be suspected that an extension of the resolution space

concept to include the constraints posed by the theory of

relativity could offer new insights.

Due to the difficulty of merging the operator theory

required by resolution space and the theory of differenti-
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able manifolds required by general relativity, the relativ-

istic resolution space theory is developed only for the case

comparabl. to the classical resolution space development

based on Hu bert spaces such as H — L2(G ,X,u), the HUbert

space of functions defined on an ordered, locally compact,

abelian group G which take values in a Hu bert space K, and

which are square integrab].e relative to a Borel measure ~~~~.

In H, we can define a spectral measure E by multiplication

by the characteristic function

1.1. [E (A)fl (s) — ~~(s)f(s)

for each Borel set A. Given the spectral measure E, we can

• define a resolution of the identity by

1.2. Et — Ef’°,t), t ~ G.

In this case , E~ reduces to a family of truncation operators

f(s) ; s < t

1.3. (E t f ) (s)
0 ; s ’t .

We also have a resolution of the identity Et defined by

1.4. Et
a 1_ E t.

The pair (H,E) is the classical resolution space in which

the resolution of th. identity Et allows th. introduction of

Ic _ 
-

- 
.- — ~~~~~~ . __.— 
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the desired time—based concepts.

We define space—time to be a pair (M ,g) where N is a

real, four-dimensional, connected C~ Hausdorf f manifold, and

g is a globally defined C~ tensor field of type (0,2) which

is nondegenerate and Lorentzian. Then analogously to the

above def inition for classical L2 resolution space , we can

define relativistic L2 resolution space to be the pair (H,E)

where H — L2(N ,K ,~i) is the Hu bert space of functions de-

fined on N with values in a Hu bert space K, and which are

square integrable with respect to a Borel measure i , and E

is a spectral measure defined by multiplication by the

characteristic function

1.5. (E(A)f) (s) — 
~~~~~~~~~~~~

for each Borel set A.

In order to proceed further , it is necessary to find

some counterpart to the resolution of the identity induced

in the classical case by the spectral measure E. We don’t

have a resolution of the identity in the relativistic case

since the manifold N isn’t ordered. It is still possible to

parallel the classical resolution space development if we

first define the past and future of any point ~ in N.

Although some care must be taken to obtain a precise def i-

nition, th. past of a point ~ is essentially the set of all
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points in N which could have sent a signal in the past

traveling at a speed less than or equal to the speed of

light which could be received by x in the present. Simi-

Jarly, the future of x is the set of all points in N which

could receive a signal sent by ~ traveling at a speed less

than the speed of light. Then the family of projections EZ

is defined by

1.6. E~ — E(f(x)]

where f(~c) is the past of z , and similarly, the family of

projections E~ is defined by

1.7. E —
C

where J4(x) is the future of x.

In addition to the fact that E~ and don’t form

C resolutions of the identity, we also have

1.8. EX + E~ ~ I (Since J~
(x)U J~ (~ ) ~

whereas in the classical case

1.9. Et + Et — I

The lack of an order on N, and the noncomplementary nature

of EZ and E~ combine to make the relativistic definitions of

concepts such as causality and strict causality more corn-

plicated, and def initions which were equivalent in the

C,)

•
~~~~~; --

~~~~~~~~~~~~~~ - ,
~~~~~~~~~~~~~ - , -  -~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ 
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classical case are no longer equivalent in the relativistic

case. It also turns out that strictly causal, strictly

anticausal , and memoryless operators are no longer enough

for decomposition of an arbitrary operator, and the totally

new concept of a spacelikei operator must be introduced. The

increased complexity of the relativistic case also prevents

several of the classical theorems from carrying over into

the relativistic setting.

The most familiar space-time is the Minkowski space-time

of special. relativity ((2], (3], (4]). Minkowski space—time

is the manifold with a flat Lorentz metric g. If x =

(x1,x2,x3,x4) and y = (y11y 2,y3y4) are two points in Mm-

kowski space-time, then

1.10. g(z,y) — x1y1 + x2y2 + x3y3 
— x4y4.

A nonzero point z is said to be timelike of g (c,z)~z0,

spacelike if g(~ ,z)>0, and null if g(~ ,z) = 0. For a given

point z, all the points separated from ~ by a timelike or

null. distance form a hypercone called a lightcone. If we

assume that all timelike distance vectors can be classified

as either future—directed or past-directed , then the light-

cone can be divided into two parts. Points separted from

z by a future—directed timelike distance are said to be in

the future of x and points separated from x by a past-

directed nonspacelike distance are said to be in the past of

— -~~, t, ’ . ?t._... S_ . .,—
~t_=-——_,—.—._ - . - — . — — -

~~ . . - .— . . — —- . —

.4



z. All other points are said to lie in the spacelike region

about z. With two spatial dimensions supressed , the light-

cone of a point ~ is shown in Figure 1.

In the next chapter, we develop a relativistic reso-

lution space theory for the special case in which the space-

time manifold is a two-dimensional version of Minkowski

space—time. We first define a special set of lines called

null lines. These lines are essentially the paths along

which a light ray would travel in our space-time. Then the

past and future of a null line are defined , and these con-

cepts are used to define a special class of sets called

diamond sets. The diamond sets are shown to form a semi-

ring and this permits them to be used to establish an in-

tegration theory paralleling that used in the classical

resolution space development ([1], [5]).

Next, causal , anticausal, and memoryless operators are

defined, and then shown to have properties similar to those

in the classical development (1].

After this, strictly causal and strictly anticausal

operators are defined, and once again , the development in

the classical. case is paralleled [1).

Finally, the decomposition theorems for an arbitrary

operator are stated and proved (1]. In order to obtain a

complete decomposition , a new type of operator called

spacelike is introduced . This operator essentially takes 

- . —  — -~~~~—.-—~~~- -~~~~~~~~~~~ — ,—- -
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care of the spacelike region ignored by the causal and

anticausal operators.

The conclusion discusses the problems involved in

• 
extending the two-~ im~~ sional theory to a more general case.

A possible technique for developing a general theory is

indicated, and we state a conjectured property of the

• spacelike operators.

1

1

C..
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CHAPTER II

THE TWO DIMENSIONAL CASE

Our space—time will be an ordered pair (M,g) where N

is the connected, two—dimensional (one space and one time

coordinate), Hausdorff C manifold R1
2 and g is the usual

flat Lorentz metric used in special relativity , i.e., for

(x1,t1) , (x2,t2)cM ,

2.1. g((x1~t1).(x2,t~)] x1x2 
— t1t2 .

This space is essentially R2 with an “inner product’S defined

by g. Following Penrose (6], a non-zero tangent vector X is

said to be timel ike if g (X X)<0, spacelike if g(X,X)>0, and

null if g(X,X) — 0. A curve in N is called timelike

(spacelike , null) if the tangent vector to the curve at

each point is timelike (spacelike, null). A curve will be

called non—spacelike if the tangent vector at each point of

the curve is either timelike or null.

We now assume that we can divide the non—spacelike

vectors at each point in N into two groups which we will

call, future— and past- directed non-spacelike vectors.

Essentially, a non—spacelike vector is future—directed if it

makes an angle of 450 to 135° with the x—axis, and it is

past-directed if it makes an angle of 225° to 315° with the

x-axis.
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Let x a (x,t) be a point of N. The future of ~ will

be denoted J’4’(z) and is defined to be the set of all points

of N which can be reached from ~ by a future—directed time-

like curve, i.e., a curve whose tangent vectors are all

future-directed timelike vectors. J” (z) doesn’t include

z. The past of ~ will be denoted f (z)  and is the set of

p all points of N which can be reached from ~ by a past-

directed non-spacelike curve, i.e., a curve in N whose

tangent vectors are all past-directed non—spacelike vec-

t,~rs. f ( ~ ) does include ~~~. For an illustration , see

Figure 2.

It is easily seen that the boundaries of the past and

future of a point are lines with slopes of + 1. Since these

lines are so important, they will be given a name, null

lines. The future of a null line is defined to be the set

of all points of N which lie in the future of some point on

the null line. The past of a null line is defined to be the

set of all points of N which lie in the past of some point on

the null line. See Figure 3.

In order to carry t)u~ough the integration theory in our

space—time setting, we need to define the class of sets

which will be used to partition N . A diamond set will be

defined to be the intersection of the pasts or futures of

any finite set of null lines, the empty set, or the whole

space M. The future (p!st) of a diamond set is the union of

~~~~~~~~~~~~~~~~~ -
~~~~
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the futures (pasts) of all the points contained in the

diamond set and is denoted J’(D),[f(D)]. All possible

diamond sets are shown in Figure 4.

Our first theorem concerns the suitability of the

diamond sets for performing the integrations.

2.1 ThEOREM The diamond sets form a semiring.

Proof: To establish this, we need to show that

i) the intersection of two diamond sets is a diamond

set, and

ii) the set difference of two diamond sets is a dis-

joint union of diamond sets.

i) is iimnediately obvious from the definition of a

diamond set. ii) is apparent from the diamond sets pictured

in Figure 4 and the fact that all lines bounding the diamond

sets have a s]ope o f + l .

In order to keep the analogy with the classical case,

we would like to be able to write the past and future of

each diamond set as the past of a single point. With each

null line L, associate two additional points LLL and

will be called the upper point of L and has the property

that the past of is the past of L. The future of will

be the empty set. will be called the lower point of L

and has the property that the future of is equal to the

future of L. The past of is considered to be the empty

‘ C 

J- -~~~~-—- - -- —~~ -~
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set. We also add two more points, + and -
~~~. The past of

+~~ and the future of -~~ are N , and the future of +~~ and the

past of -
~~ are the empty set. These added points are purely

a notational convenience, and as such, they have no relation

to the points of N. We have not yet been able to discover

whether or not there is a topology which would continuously

extend the metric to include these points. With the inclu-

• sion of these extra points , it is now possible to write the

past and future of any diamond set as the past and future of

• two unique points. For an example, see Figure 5.

Now let L2(M) be the filbert space of L2 functions

defined on N. If A is a subset of N, we define the pro-

j ecticn

2.2. E(A): L2(M) 
-
~ L2(M)

by

f (~c), 3ccA
2.3. E(A)f(z) — , f c L (N)

0 ,~~~A

Analogously to the classical case, we define the projections

EX : L2(N) L2(N) and E~
: L2(M) 

-
~ L2(M) for x c N by

2 .4 .  E X 
— E(f(z)]

and

2.5. E~ —

~~~~~~~~~~~~~ ~~~~~~ 
—-——
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-

J4’(D) a J~~(j )  J9 (D) —

J (D) — f (x )  J (D) — J ( i )

_ 
-i

J4’(D) — J ( LM ) ?(D) a J~~( y )

a 

f(D) - J (u L) 
J (D) a f(uL)

Figure 5.
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• Let T be an operator on L2(M). We say T is causal if it

satisfies the two following conditions:

2.6. EZ T _ E X T E ~~ V X C M

and

2.7. T E ,~~~
E,~

T E
~~
V
~~~

e M .

Notice that in the classical case. these two causality

conditions imply each other. This is a result of the fact

the ranges of E~ and E~ are complementary subspaces in the

classical case. This is not the case in the relativistic

• setting , and both parts of the definition are required to

give a physically desirable interpretation of causality.

We say that T is anticausa] if

2.8. E~~ T = E ,~~T E ~~
V

~~~
c M

2.9.  T EX — EX T E~ V z ~ N.

Let D (u. , L) denote a diamond set D with ~
‘(D) —

and f (D) — f (u~) .  We have the following theorem.

2.2 THEOREM T: L2(M) 
-
~~ L2 (M ) is causal if and only if

2.10. E(D(~ ,L)]T — E(D(u.,L)]T EU

and

2.11. T E(D(u,-t)] — ELT E[D(u.,t)]



•

~~

-

~

---— — — — —_~~~
---

~~~~~~ - ~— - ~—~----- -— - —
— 

• •_ ~~~~~~~ • •~~ • ••~~ • -~~~ -

119

- 

I for all diamond sets D Cu . , 2 4 .

Proof : Suppose T is causal . Then E”T a EUTEU and TE1 a E LTE L
It is easily seen that E ( D ( u . , & ) ] E~ (D( u. , L ) ]  and
a E[D( u ,2 . ) ] .  Then E(D(u.,L)1E~T — E(D(u.,&)]E’1

~TE~ or E(D(u.,L)]T

— E ( D ( u . ,L ) J T E ~~. Similarly T E ( D (u . , L ) ]  — EtTE (D (u ,L ) ] .

Now suppose TE (D ( LL ,L ) ]  a ELTE (D(u.,Z ) ]  and E [ D (u ,L ) ] T  ~ 
. 

I
E ( D ( u. , &)] TE ~ for all diamond sets . Let ~ be any point of PA .

Then J” (z )  and f(z )  are diamond sets. It is also easily

seen that J’
~
’(J~~(x ) j — J~

’(X) and f (f (~ ) ]  — J (x)~ From

this , it follows that E XT EZTEZ and TE~ 
- E XTE X ,

• We obtain a similar theorem for anticausa]. operators .

2.3 THEOREM: T: L2 (M) -
~ L2 (M ) is anticausal if and only

if

2.12 . TE(D(u ,t)] — EUTE[D(u.,L)]

and

2. 13. E ( D ( u . , t f lT  — E(D(u.,L)]TE 2.

- 
An operator T: L2 (M) L2(M) is said to be memoryless

if ‘I’ is both causal. and anticausal. We have the following

theorem.

2.4 THEOREM: T is memoryless if and only if

2. 14. E ( D ( u , L ) ] T — TE (D(u. , - L ) 3

IC
- =1~~~~ 

~~~~~~~~~~~~~~~~ -— •— —i- .•- -• -.•
.
_______;__‘- ~~~~~~~~ ________
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for every diamond set D(u,L).

Proof: First assume T is memoryless. Then T is both causal

and anticausal. T causal implies that

E (D ( u. , 24 IT — E(D(a,L)]TEt1 
, and

TE (D ( u , t ) ]  —

and T anticausal implies that

E ( D ( u. , 2 ) ]T  — E[D(u.,Z)]TEz , and

TE (D ( a , 2 ) 3 —  E”TE[D(u, 2 ) ] .

Then E ( D ( u , t ) ] T  — (E (D (u . , L ) ) E ~ —

— E ( D ( u , t ) ) T E ( D ( u . , t ) ) ,

and

TE(D(u.,t)3 = E2[TE(D(a,94fl

— E2 (E UTE(D(u,dt))3

= E(D(u.,L))TE(D(u,L)).

Hence E ( D ( a , L ) IT  — TE(D(u.,&)] for all diamond sets D(u,L).

Now suppose E ( D ( u . , L) IT — T E ( D ( u . , 94] for all diamond

sets D ( u . , t ) .

Then E [D ( a ,L )] T  a E(D(u,t)]TE(D(u,L)I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~ --~~~~~~~~~~~~ - - -~~~~~~~~~ --
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“ I

and E(D(u.,L)]TE~~— E(D(u,t)]TE[D(u,,t)]E
t4

— E(D(a,L)]TE[D(u,2)] — E[D (u.,L)3T.

Similarly E2TE(D(u,t)] — TE(D(t~,Q43 . Hence T is causal.

-

‘ 

Similarly T is anticausal. Therefore T is memoryless.

The classes of operators which have been defined are as

well-behaved as in the classical case.

2.5 THEOREM: The set of causal (anticausal , memoryless)

bounded linear operators from a Banach algebra with identity

which is closed in the strong operator topology of the

algebra of all linear bounded operators.

Proof: The proof will be presented for the causal case only

since the proof for the anticausal case is very similar, and

the result for the memoryless case follows from the fact

that the intersection of two Banach algebras is also a

Banach algebra.

If T and S are causal, then

EZTS (EXTEX)S = EXT(EXS) — EXT(EXSEX)

(EXTEX) SEX — EXTSEZ

Similarly, TSEZ — EXTSEX a and

hence ST is causal. If we take the sum of S and T, we have

EX (S+T) EXS + EXT ~ E
ZSEZ + EXTEX — E~ (S + T)EX , and

(S + T)E~ — EX (S + T )E Z.

Thus S + T is causal. Also, EXI - EZEXI — EXIEX and IE~
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— E
~
IEX. This proves the identity is causal. Finally, if

is a sequence of causal operators converging strongly to T,

i.e.,  Urn T . f  — Tf for all f, then since EZ is bounded ,
i-..4

~

EXTf EX (lim T1f I u r n  EXT~f
i-~~~

— u r n  EXT.EXf ~ E
X Ilim T.EXf] — EXTEXf.

i-•,~ 
1. j -~.4~ 

1

Similarly , TEZf EXTEXf for all f. Hence T is causal.

We have the following theorem for the adjoi.nt of a

causal operator.

2.6 THEOREM: An operator T is causal if and only if T* is

anticausal.

-
~ Proof: Suppose T is causal. Then EZT a EXTEX. Taking the

adjoint of both sides, we have (E~T)* = (EZTEX)* which

reduces to T*EZ = EZT*EX . Similarly , EXT* = E~T*E,~. Hence

Tt is anticausal. The converse is similar.

Since a memoryless operator, is both causal and anti-

causal, then so is its adjoint and hence the adjoint of a

inemoryless operator is also memoryless.

At the moment, nothing can be said about the inverse of

a causal operator in the relativistic case. The results

from the classical case don’t carry over, partly because the

• ranges of the projections aren ’t complementary subspaces ,

and partly because the condition E~f — EXg a> EXTf —
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EXTg, V x c N, f,g~L2(M) , is not enough to insure causality

for T in the relativistic case.

We come now to the extension of the integrals of

triangular truncation to the relativistic setting. It was

for this purpose that the diamond sets were introduced.

Since they form a semiring, they can be used to partition

N so that the integrals can be defined (5]. The upper

Cauchy integral of an operator valued function f on PA is

defined by

n Sp)
2.15. UC J f(~ )dE(X) — lint )~ 

f(u.j)E(D~
(tLjI L~

)J
pci’ i 1

where the limit exists in the uniform topology over the net

of all partitions of N into diamond sets D~ (u.~ 1 L~). Simi—

larly, the lower Cauchy integral is defined by

n(p)
2.16. LC f f(X)dE(z) = u r n  3’

pcP i 1

These integrals can also be defined with the measure on the

left, ~r over a portion of N instead of all PA . We can also

define the strong Cauchy integrals suc f and SLCJ by taking

the limit in the strong operator topology. We then have the

following theorem relating causality to these Cauchy inte-

grals.

• 2.7 THEOREM: The following are equivalent for a linear

bounded operator T.

C 
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i) T is causal.

2.17. ii) ~JC f dE(X)TEZ — LC f EXTdE(X) — T.

2.18. iii) SUC f dE(X)TEX — SLC I E,~TdE(x) — T.

Proof: i) —> ii).

If T is causal, then E ( D ( u . ,L ) ) T E ~C a E(D(u,241T and E
~
TE[D(u.,t)]

— TE(D(u,t)) for all X C M . Hence for any partition of N into

diamond sets,

nip)
T = IT (lint ) E[D ( u., t.)))T

pcP i—l 1 1

nip)
— lint ~ E(D.(u~~L~)]TpcP i—l .1

nip) U .

— lint ~ E [D~~(u~~~L~ ) ] T E 1

pci’ i l

UC f dE(z)TE’~.

Similarly , T — LC f E~TdE(X).

ii) —> iii) .

This follows ixtunediately from the fact that uniform

con~, ~~gence implies strong convergence .

iii) —, i.

We have SUC f dE(X)TEX - SLC f E~TdE (x) - T. Then E~T —

EYSUCJ dE (X)TEX — SUCf~— (~ )dE(X)TE — StTCff(~)dE (X)TE E~

1
• 

_  Li_ _ _  
*
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— [SUCfJ~ (~ )dE(X)TE
’]E~.

a E~TE~ . Similarly, TE~ — E~TE~.

Hence T is causal .

A similar theorem is also true for anticausal operators.

2.8 THOEREM: The following are equivalent for a bounded

linear operator T.

i) T is anticausal.

2.19. ii) UCJE
ZTdE(,c) — LCfdE (X)TE

~ 
— T.

2.20. iii) SUCIEXTdE(X) SLCfdE (~c)TE~ — T.

For an integral representation of memoryless operators,

we need to define the diagonal Cauchy integral

n(p)
2.21. CJdE (z)TdE (x) 1im ~pcP t—l 1 a. 1.

where the limit is taken in the uniform topology over the

net of all partitions of N into diamond sets. We can also

define the strong diagonal Cauchy integral SCJdE(X)TdE (~c)

by taking the limit in the strong topology. We then have

the following theorem for meinoryless operators.

2.9 THEOREM: For a bounded linear operator T , the fol-

lowing are equivalent .

i) T is memoryless.

2.22. ii) CfdE (x)TdE(z) — T.
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• 2.23. iii) SCJdE(z)TdE(x) — T.

Proof: Similar to the proof of the theorem for causal

operators .

We now define the notion of strict causality. A

bounded linear operator T is said to be strictly causal if

2.24. LCfdE(x)TE’~ — UCfE
~
TdE(x) = T.

A bounded linear operator is said to be strongly strictiy

causal if

2.25. SLCJdE(X)TE* = SUCfE
~
TdE(x) = T.

The strictly causal case is different from the causal case

in that strict causality implies strong strict causality

but not conversely (see [1]).

In order to characterize the relationship between the

strictly causal and causal operators, we need to define the

following integrals.

n(p) 2
2.26. §JdE(X)TEX — lim Z E ( D

~~
(LL
~
,Li)]T(E 

i _ E  
~~
) .

pcP ]

n ( D )
2.27 . ~‘J!~

TdE(z) — lint ~ (E t — E~ )TE(D~ (u.~~t~ )I.o cP i ] .  i i

The limit is taken in the uniform topology over the net of

all partitions of N into diamond sets . We can also define

the integrals 

-~~~~~~—~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~ -- ~1
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1

SSJdE(X)TEX and S
~
’JE

~
TdE(z)

where the 1 t is taken in the strong topology. We then

have the following theorem for strictly causal operators.

2.10 THEOREM: A bounded linear operator T is strictly

causal if and only if T is causal and

2.28. SJd.E(z)TE* — 
~f!~

TdE(z)

Proof: First suppose that T is strictly causal.

E XT — EXLCJMdE(y)TE
Y — LCfJ

_
~~)dE(y)TE

Y

— LCJJ
_
(x)dE(y)TE

YEX — EXTEX .

Similarly TEX — EXTEX . Hence T is causal. T being causal

• implies that

T — UCfdE(x)TEZ

nip)
— lint ~ E (D.(U.,ti)]TE 

1.

p c P i l  .1. ~

n(p) 2 1 u~ t
— lint X E(Dj(u j.&i)]T(E 

‘ + (E ~—E 
1] )

pci’ i ’l

n p) 2 .  n p )
— lint EID (u ,z ) ]~~~~ + him

:. pc’P ial ~ ~ pci’ i—i. 1

UI 2 1
(E ‘—E •‘

~I

— LCJdE(z)TEX + SfdE(x)TEX

— T + SfdE(x)TEX
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Hence SfdE (x ) TE Z 
— 0. Similarly ~ fE XTdE (z)  — 0.

By reversing the above argument, it can be seen that T

causal and SJdE (z)TEZ — ~fçTdz(X) 
a a implies that T is

strictly causal .

We have a similar theorem for strongly strictly causal

operators.

2.11 THEOREM: A bounded linear operator T is strongly

strictly causal if and only if P is causal and

2.29. SSfdE(~ )TE
Z S

~
’J
~~
TdE(z) — 0.

There are also similar theorems for strictly anticausal

and strongly strictly anticausa]. operators. We first need

to define the following integrals.

ri p) a. 2
2.30. ~JE

ZTdE(X) — lint (E 1—E ~]TE(D.(u..,t.)].— pcP i—i. 1 1. 1.

nip)
2.31. SfdE(z)TE

~ 
lint 

~ 
E(Di(u..~~

.Qj)]T(Et —E~ 
1.

pcP i—l i i

Again , the limit is taken in the uniform topology over the

net of all partitions of N into diamond sets . Then we have

the following theorem which is proved in the same manner as

the corresponding theorem on strictly causal operators .

2.12 THEOREM: A bounded linear operator P is strictly

anticausal if and only if T is anticausal and

A
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• 1

r 2.32. SJEXTdE(X) — 
~
fdE (X)TE

~ 
— 0.

If we take limits in the strong topology , we obtain the

following theorem for strongly strictly anticausal operators.

2.13 THEOREM: A bounded linear operator T is strongly

strictly anticausal if and only if P is anticausal and

2.33. S~JE
ZTdE(z) — S

~ fdE (x ) TE~ — 0.

We have the following theorem for the space of strictly

causal (strictly anticausal , strongly strictly causal,

strongly strictly anticausal ) operators.

2.14 THEOREM: The space of strictly causal (strictly

anticausal , strongly strictly causal, strongly strictly

anticausal ) operators forms a Banach space which is closed

in the uniform operator topology of the space of all bounded

linear operators.

Proof : The proofs in all four cases are similar, so only

the strictly causal case will, be presented .

These operators form a Banach space since they are

defined by a linear equation P — LCJdE (x ) TE Z . Now suppose

T~-sT where the Ti are strictly causal. S:nce the Ti are

strictly causal , they are causal, and hence P is causal. We

would now like to show that SJdE(X)TEX — 0.

For any c > 0, choose j such that I lT~ - Tj I < c/2 and a_________ __________ __________ ___________ 
•
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partition of N into diamond sets Dj(LLi,Lj), i a l,...,n such

that

H ~‘E(D~ (U~.L~)]T (E~~)I ) < €/2.
i—i

2.. n
Then {

~ ~ E(D~ (U~~L~)]T(E —E 1
) 1 1  — )

~ ~E[D.(u.j,
Li)](T~

T4)
i—i m l  ~a 2. n a 2.

(E —E ) + ~~~~~~~~~~~~~~~~~ —E ) I l  < sup j IEtD m (u~
,Li)1

U. . 
i i  (L 1 L

(T—T.) (E 1...E2.j) ~ + s~ p I  IEtD~ (u. ~L~)]T4(E 
i_E i) H < c/2 +

3 3.

€/2 — c. So the partial sums for SfdE(z)TE” converge to

zero. Similarly, ~‘f~~TdE(~ ) — 0. Hence T is strictly

causal .

The following theorem relates the strictly causal and

the strictly anticausal operators to each other.

2.15 THEOREM: An operator T is (strongly) strictly causal

if and only if ~~* is (strongly) strictly anticausal.
n(p) 2..

Proof: LCfdE(3~)TE
X_ him ~ E(D

~
(a., Lm)TE ~~. If we take

nip) pci’ i—I.
the adj oint of ~ E[D.(u.,t.)]TE ~~, then we have

1 3. 1

nip) t~,
~ E T*E(D~~(a~~ L~ ) ] .  Since the adj oint is a linear

i—h
isometry in the space of bounded linear operators on a

Hilbert space, the first integral converges to P if and only

if the second integral converges to ~~~~ Using a similar

procedure for UCJE,~ TdE(~ ), we see that P is strictly causal

if and only if T~ is strictly anticausal .

In order to state and prove the additive decomposition

L ____ 
— - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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theorem for arbitrary operators, we first need to define a

new class of operators which will be called spacelike.

For a diamond set D(LL,L) we define the projection

2.34. E~ — I—Et—E
~
.

With this definition, we say that an operator P is spacelike

if

2.35. TE[D(a,t)] a E~T!(D(u,L)]

and

2.36. E ( D ( a , L ) ) T  — E[D(c.t ,Lfl~rE~

for all, diamond sets D(u., L).

We can obtain an integral characterization of spacehike

• 
• 

operators by defining the following integrals.
• 

• n (p )  2.
- - 2.37. Sf&’TdE(x) — lint ~ E

~~
TE(Dj(aj,2.i)].p c P i l  i

2.38. SfdE(z)TEX — lint 
n
~
P)
E[D (UL)]TE

Li
• 

~ p c P i l  1 1

The limit is taken in the uniform topology over the set of

all partitions of N into diamond sets. We can also take

limits in the strong topology in which case we obtain the

integrals SSfE~TdE(x) and SSJdE(X)TE~ . We then have the

following theorem.

C 
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2.16 THEOREM: For a bounded linear operator P. the fol-

lowing are equivalent.

i) P is spacelike.

2.39. ii) SfE~TdE(c)  — SJdE(x) TE~ — P

2.40. iii) SSfE~TdE(z) a SSfdE (x)TE~ 
a P.

Proof: Similar to the proof for the causal case.

We also obtain the following theorem for the relation-

ship between a spacelike operator P and its adjoint Pt.

2.17 THEOREM: P is spacehike if and only if Tt is space-

like.

I Proof: TE(D(a ,2.)] a E~TE[D(u,t)]<1m>E (D(LL ,&)]T*

E(D(a,L)]T*E~ and,

— E[D(u,L))TE~<1.>T*E[D(a,241

— E~T*E(D(LL,&)].

Finally , we obtain the additive decomposition theorem

for an arbitrary bounded linear operator.

2.19 THEOREM: Let P be an arbitrary bounded linear oper-

ator. Then P can be decomposed as P — C + A + S where C is

-_~~-~-- -~~-~~
i_

~~~T~~~T. -- - •_ ~~~~-~~ 
_ _ _ _ _ _
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strictly causal , A is strictly anticausal , and S is space—

like if and only if the integrals

UCJE
~
TdE(z) , LCIdE(z)TEX

LCJEZTdE(z) , UCfdE(z)TE
~

SfZ Td2(z) and SJdE(z)TE~

exist and satisfy

1 i: 2. 41. UCJE XTdE(z) — LCfd.E(X)TEX ,

2 .42 .  LC IE ZTdZ(z) — UCfdE(~ )TE~ ,

and

2.43. SfE~TdE(c) — SfdE(z)PE~

in which case the decomposition is given by

2.44. C — UCJEXTdE(z) 
a LCJdE(z)TEZ,

2.45. A — LCJEZTdE(z) a UCfdE (x)TE
~
,

and

2.46. S — SfE~TdZ(z) — SJdE(z)TE~ .

Proof: First assume that all the integrals exist and sat-

isfy the required relationships. Then
I

I
- —- - - -

~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• 

- • •
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nSp)
T — UCfTdE(~) — him ~ TE (D

~
(aj,L~

)]
peP i—i.

n(p) L
~,— lint )‘ (E + E

~ 
+ E

~ 
]TE[D~~(tL~ L~ ) 1

p c P i l  i 1.

n(p) £ n(p)
— him ~ E mTE(D.(a~.t~ )1+him ~ 

TE[Dj(a~
,Li)]

pci’ i— i. 1 p€Pi—l

nip) 2..
+ lint 

~ 
E
~~
’TE(D

~
(uj,Li)]

pci’ i—i i

— t~cfE
ZTdE~~~+ucfE~TdE (X)+SIE~TdE(x).

Similarly ,

P — LcfdzzT

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We have

ucf F~CdE (~) 
a ucf !~ (UCJE~TdE (y) dE (z)

- UCfE
~
2dE(:) — C.

Similarly, LcfdE(z)CE Z — C.

Hence C is strictly causal.

Similarly, A is strictly anticausal , S is space—

like , and therefore this is the desired decomposition .

Now, suppose that the desired decomposition exists .

Then

-— 
-
-=-- T1
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UCfE~TdE(~ ) - UCfE ,~(C+A+S ) dE (~~)

— UCJE X CdE ( z) +U CJE XAdE ( z)+UC I E Z SdE ( z ) .

nip)
UCfE

~
AdE(z) lint 

~ 
E
~ 

AE( D~~(u.~~.&~~) )
pcPi—1 i

— lint ~ E E AE [ D . ( u . 1 L~ ) )  — 0.
pcP i—] U.

3. ~ 1

n(p)
ucfE~ sdE (

~~
) — lint 

~ 
E
~ 
SE(D~ (u~ .L~ )]p€P i—l i

nip) 2..
— lint ~ E E 1SE( D. (u . , L . ) )  — 0.

pcP i—1 CL~~~ LL~ 3. 3. 1

Hence UCJEXTdE(~
) - UCfE~CdE(z) — C.

Similarly LCfdE(z)TE~ — C. Thus C is of the required

form . In the same manner , A and S can be shown to have

the required form .

We have a similar theorem for additive decomposition

into operators defined by strongly convergent integrals.

2.20 THEOREM: Let T be an arbitrary linear bounded

operator . Then P can be decomposed as P - C + A + S

where C is strongly strictly causal , A is strongly

strictly anticausal, and S is spacehike if and only if

the integrals

-
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SUCfE
~
TdE(

~
) , SLCJdE(z)TEX ,

SLCIE
XTdE(X) , SUCf dE (x )T E ~~,

SSfE~TdE(X) and SSJdE(Z)TE~

exist and satisfy

2 .47 .  SUCfE~TdE (~~) = SLC fdE (X ) TE ~

2 .48 .  SLCfE~ TdE (x ~) = SUC fdE(z )TE ,~ ~

and

2 . 4 9 .  SS fE~TdE (z )  = S SfdE (x ) T E ~~,

in which case the decomposition is given by

2.50. C = SUCJEXTdE(x) = SLCfdE (~~)TE~~,

2.51. A = SLCJEXTdE(z) = SUC f dE (x )T E ,~,

and

2.52. S — SSfE~TdE(X) = SSfdE (zJPE~

• 
-- 

_~ - —- ~~~~~~~~~~~~~~~~~~~ 
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CHAPTER III

CONCLUSIONS

Following the development of resolution space for the

two—dimensional special relativistic case , it would be

nice to extend the development to the four-dimensional

special relativistic case, and then to the general rela-

tivistic case. However, no way has been found to extend

the results in this paper to even the three-dimensional

special relativistic setting.

One major problem has been the attempt to keep a

point development of resolution space. The lack of an

ordering on the space-time manifolds presented difficulties

even in the two-dimensional case. By using diamond sets

it was possible to keep a semblance of the point develop-

ment, but even in this case special points had to be

introduced, and attempts to extend the space-time topology

to include the extra points in such a manner as to con-

tinuously extend the metric were fruitless.

We attempted to extend the diamond sets to higher

dimensions, but we were unable to find a higher dimen- 
•

sional analogue of the diamond sets. Hence, it would

appear that the diamond sets are peculiar to two dimen—

sions. However, the Borel sets in two dimensions can be

generated from the diamond sets, and possibly a higher
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dim nsional development could proceed from a purely set

viewpoint without recourse to points Such a development

would us. the spectral measure E with iti projections E(A)

and not even try to bother with point pro jections such

as EX. We feel that this technique would end up produc-

ing much the same results paralleling classical resolution

space as in the two-dimensional case.

Although most of th. results mirrored thos. of

classical resolution space , on. new type of operator was

obtained which appears to be a generalization of the

memory]ess op.rator. This is the spacehike operator

which was introduced in the decomposition theorem. It

is conjec tured that if the inverse of a spacel ik. op.r-

ator exists, then it will also be spacehik..

However , other than this one interesting conjecture

the extension of resolution space to a relativistic set-

ting seems to offer  little promise of new insights into

opera tor theoretic systems theory .

• —- —-
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